Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review

Zhichao Song , Chuangzhou Wu , Zuoyong Li , Danyi Shen

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) : 100100

PDF (7508KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) :100100 DOI: 10.1016/j.bgtech.2024.100100
Review article
research-article

Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review

Author information +
History +
PDF (7508KB)

Abstract

In this review, the development and application of microbially induced carbonate precipitation (MICP) technology for the sealing of underground engineering fractures are discussed in detail. The importance of sealing micro-fractures in an environmentally friendly and efficient manner is emphasized, and the potential of the MICP method in controlling pore and fracture seepage is highlighted. The fundamental mechanisms, key influencing factors, numerical models, and applications of the MICP in the fields of geological CO2 storage and oil resources development are comprehensively summarized in the paper. At the same time, the limitations of the existing research and the future research directions are discussed, especially in terms of improving the processing efficiency, environmental impacts, and cost considerations. Overall, the development of MICP technology provides a new environmentally friendly reinforcement method for geotechnical engineering and is expected to play a key role in the future development of underground space engineering.

Keywords

Microbially induced carbonate precipitation (MICP) / Fracture sealing / Bio-grouting / Engineering applications

Cite this article

Download citation ▾
Zhichao Song, Chuangzhou Wu, Zuoyong Li, Danyi Shen. Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review. Biogeotechnics, 2024, 2(4): 100100 DOI:10.1016/j.bgtech.2024.100100

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhichao Song: Writing - original draft, Investigation, Formal analysis, Data curation, Conceptualization. Chuangzhou Wu: Writing - review & editing, Writing - original draft, Methodology, Funding acquisition. Zuoyong Li: Writing - original draft, Visualization, Validation, Resources, Methodology. Danyi Shen: Writing - review & editing, Supervision, Project administration, Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Chuangzhou Wu is an editorial board member for Biogeotechnics and was not involved in the editorial review or the decision to publish this article.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 42177141).

References

[1]

Ajoma, E., Saira, Sungkachart, T., Ge, J., & Le-Hussain, F. (2020). Water-saturated CO2 injection to improve oil recovery and CO2 storage. Applied Energy, 266, Article 114853. https://doi.org/10.1016/j.apenergy.2020.114853

[2]

Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

[3]

Al-Thawadi, S., & Cord-Ruwisch, R. (2012). Calcium Carbonate Crystals Formation by Ureolytic Bacteria Isolated from Australian Soil and Sludge.

[4]

Azenkeng, A., Mibeck, B. A. F., Kurz, B. A., Gorecki, C. D., Myshakin, E. M., Goodman, A. L., & Sanguinito, S. (2020). An image-based equation for estimating the prospective CO2 storage resource of organic-rich shale formations. International Journal of Greenhouse Gas Control, 98, Article 103038. https://doi.org/10.1016/j.ijggc.2020.103038

[5]

Bai, M., Zhang, Z., & Fu, X. (2016). A review on well integrity issues for CO 2 geological storage and enhanced gas recovery. Renewable and Sustainable Energy Reviews, 59, 920-926. https://doi.org/10.1016/j.rser.2016.01.043

[6]

Cardoso, R., Arbabzadeh, E., De Lima, J. T., Flores-Colen, I., Pereira, M. F. C., Costa E Silva, M., Duarte, S. O. D., & Monteiro, G. A. (2021). The influence of stone joints width and roughness on the efficiency of biocementation sealing. Construction and Building Materials, 283, Article 122743. https://doi.org/10.1016/j.conbuildmat.2021.122743

[7]

Carroll, S. A., Iyer, J., & Walsh, S. D. C. (2017). Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO 2 Storage Reservoirs. Accounts of Chemical Research, 50(8), 1829-1837. https://doi.org/10.1021/acs.accounts.7b00094

[8]

Chen, Y., Han, Y., Zhang, X., Sarajpoor, S., Zhang, S., & Yao, X. (2023). Experimental study on permeability and strength characteristics of MICP-treated calcareous sand. Biogeotechnics, 1(3), Article 100034. https://doi.org/10.1016/j.bgtech.2023.100034

[9]

Cheng, L., Cord-Ruwisch, R., & Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023

[10]

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14(3), 615-626. https://doi.org/10.1007/s11440-018-0738-2

[11]

Cheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), Article 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

[12]

Cheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376-1385. https://doi.org/10.1139/cgj-2015-0635

[13]

Choi, S.-G., Wang, K., Wen, Z., & Chu, J. (2017). Mortar crack repair using microbial induced calcite precipitation method. Cement and Concrete Composites, 83, 209-221. https://doi.org/10.1016/j.cemconcomp.2017.07.013

[14]

Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, 23(2), 399-414. https://doi.org/10.1007/s10596-018-9797-6

[15]

Cunningham, A. B., Phillips, A. J., Troyer, E., Lauchnor, E., Hiebert, R., Gerlach, R., & Spangler, L. (2014). Wellbore leakage mitigation using engineered biomineralization. Energy Procedia, 63, 4612-4619. https://doi.org/10.1016/j.egypro.2014.11.494

[16]

Cuthbert, M. O., McMillan, L. A., Handley-Sidhu, S., Riley, Michael, S., Tobler, D. J., & Phoenix,Vernon R. (2013). A Field and Modeling Study of Fractured rock permeability reduction using microbially induced calcite precipitation. Environmental Science & Technology, 47(23), 13637-13643. https://doi.org/10.1021/es402601g

[17]

Davies, R. J., Almond, S., Ward, R. S., Jackson, R. B., Adams, C., Worrall, F., Herringshaw, L. G., Gluyas, J. G., & Whitehead, M. A. (2014). Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Marine and Petroleum Geology, 56, 239-254. https://doi.org/10.1016/j.marpetgeo.2014.03.001

[18]

De Andrade, J., & Sangesland, S. (2016). Cement sheath failure mechanisms: Numerical estimates to design for long-term well integrity. Journal of Petroleum Science and Engineering, 147, 682-698. https://doi.org/10.1016/j.petrol.2016.08.032

[19]

DeJong, J. T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

[20]

Dhawan, K. R., Singh, D. N., & Gupta, I. D. (2004). Dynamic analysis of underground openings. Rock Mechanics and Rock Engineering, 37(4), 299-315. https://doi.org/10.1007/s00603-004-0028-1

[21]

Dong, Z.-H., Pan, X.-H., Tang, C.-S., & Shi, B. (2022). Microbial healing of nature-like rough sandstone fractures for rock weathering mitigation. Environmental Earth Sciences, 81(15), 394. https://doi.org/10.1007/s12665-022-10510-w

[22]

Ebigbo, A., Phillips, A., Gerlach, R., Helmig, R., Cunningham, A. B., Class, H., & Spangler, L. H. (2012). Darcy‐scale modeling of microbially induced carbonate mineral precipitation in sand columns. Water Resources Research, 48(7), Article 2011WR011714. https://doi.org/10.1029/2011WR011714

[23]

Fauriel, S., & Laloui, L. (2012). A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Computers and Geotechnics, 46, 104-120. https://doi.org/10.1016/j.compgeo.2012.05.017

[24]

Ferris, F. G., Stehmeier, L. G., Kantzas, A., & Mourits, F. M. (1997). Bacteriogenic Mineral Plugging. Journal of Canadian Petroleum Technology, 36(9). https://doi.org/10.2118/97-09-07.

[25]

Figueiredo, B., Tsang, C.-F., Rutqvist, J., & Niemi, A. (2017). The effects of nearby fractures on hydraulically induced fracture propagation and permeability changes. Engineering Geology, 228, 197-213. https://doi.org/10.1016/j.enggeo.2017.08.011

[26]

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), Article 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[27]

Gell, K., & Wittke, W. (1986). A new design concept for arch dams taking into account seepage forces. Rock Mechanics and Rock Engineering, 19(4), 187-204. https://doi.org/10.1007/BF01039995

[28]

Gmünder, C., & Arn,T (1993). Application of seepage flow models to a drainage project in fractured rock. Rock Mechanics and Rock Engineering, 26, 113-135. https://doi.org/10.1007/BF01023619.

[29]

Haagsma, A., Weber, S., Moody, M., Sminchak, J., Gerst, J., & Gupta, N. (2017). Comparative wellbore integrity evaluation across a complex of oil and gas fields within the Michigan Basin and implications for CO 2 storage. Greenhouse Gases: Science and Technology, 7(5), 828-842. https://doi.org/10.1002/ghg.1620

[30]

Harkes, M. P., Van Paassen, L. A., Booster, J. L., Whiffin, V. S., & Van Loosdrecht, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004

[31]

He, J., Liu, Y., Liu, L., Yan, B., Li, L., Meng, H., Hang, L., Qi, Y., Wu, M., & Gao, Y. (2023). Recent development on optimization of bio-cementation for soil stabilization and wind erosion control. Biogeotechnics, 1(2), Article 100022. https://doi.org/10.1016/j.bgtech.2023.100022

[32]

He, M., Ren, S., Guo, L., Lin, W., Zhang, T., & Tao, Z. (2022). Experimental study on influence of host rock strength on shear performance of Micro-NPR steel bolted rock joints. International Journal of Rock Mechanics and Mining Sciences, 159, Article 105236. https://doi.org/10.1016/j.ijrmms.2022.105236

[33]

Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3

[34]

Jia, B., Tsau, J.-S., & Barati, R. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236, 404-427. https://doi.org/10.1016/j.fuel.2018.08.103

[35]

Jiang, N.-J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182

[36]

Jin, L., Hawthorne, S., Sorensen, J., Pekot, L., Kurz, B., Smith, S., Heebink, L., Herdegen, V., Bosshart, N., Torres, J., Dalkhaa, C., Peterson, K., Gorecki, C., Steadman, E., & Harju, J. (2017). Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales. Applied Energy, 208, 171-183. https://doi.org/10.1016/j.apenergy.2017.10.054

[37]

Kelemen, P., Benson, S. M., Pilorgé H., Psarras, P., & Wilcox, J. (2019). An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, 9. https://doi.org/10.3389/fclim.2019.00009

[38]

Kirkland, C. M., Akyel, A., Hiebert, R., McCloskey, J., Kirksey, J., Cunningham, A. B., Gerlach, R., Spangler, L., & Phillips, A. J. (2021). Ureolysis-induced calcium carbonate precipitation (UICP) in the presence of CO2-affected brine: A field demonstration. International Journal of Greenhouse Gas Control, 109, Article 103391. https://doi.org/10.1016/j.ijggc.2021.103391

[39]

Kirkland, C. M., Thane, A., Hiebert, R., Hyatt, R., Kirksey, J., Cunningham, A. B., Gerlach, R., Spangler, L., & Phillips, A. J. (2020). Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration. Journal of Petroleum Science and Engineering, 190, Article 107060. https://doi.org/10.1016/j.petrol.2020.107060

[40]

Kolawole, O. (2023). Mechanistic study of microbial altered properties in dolostones. Rock Mechanics and Rock Engineering, 56(2), 1099-1111. https://doi.org/10.1007/s00603-022-03116-y

[41]

Kolawole, O., Assaad, R. H., Adams, M. P., Ngoma, M. C., Anya, A., & Assaf, G. (2023). Coupled Experimental Assessment and Machine Learning Prediction of Mechanical Integrity of MICP and Cement Paste as Underground Plugging Materials. BiogeotechnicsArticle 100020. https://doi.org/10.1016/j.bgtech.2023.100020

[42]

Kolawole, O., Ispas, I., Kumar, M., Weber, J., & Zhao, B. (2021). Time-Lapse Biogeomechanical Modified Properties of Ultra-Low Permeability Reservoirs. Rock Mechanics and Rock Engineering, 54(6), 2615-2641. https://doi.org/10.1007/s00603-021-02410-5

[43]

Kolawole, O., Millikan, C., Kumar, M., Ispas, I., Schwartz, B., Weber, J., Badurina, L., & Šegvić B. (2022). Impact of microbial-rock-CO2 interactions on containment and storage security of supercritical CO2 in carbonates. International Journal of Greenhouse Gas Control, 120, Article 103755. https://doi.org/10.1016/j.ijggc.2022.103755

[44]

Lai, H.-J., Cui, M.-J., & Chu, J. (2022). Effect of pH on soil improvement using one-phase- low-pH MICP or EICP biocementation method. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01759-3

[45]

Lai, H., Ding, X., Cui, M., Zheng, J., Chen, Z., Pei, J., & Zhang, J. (2023). Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review. Biogeotechnics, 1(3), Article 100039. https://doi.org/10.1016/j.bgtech.2023.100039

[46]

Landa-Marbán, D., Tveit, S., Kumar, K., & Gasda, S. E. (2021). Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 106, Article 103256. https://doi.org/10.1016/j.ijggc.2021.103256.

[47]

Levine, J. S., Fukai, I., Soeder, D. J., Bromhal, G., Dilmore, R. M., Guthrie, G. D., Rodosta, T., Sanguinito, S., Frailey, S., Gorecki, C., Peck, W., & Goodman, A. L. (2016). U.S. DOE NETL methodology for estimating the prospective CO2 storage resource of shales at the national and regional scale. International Journal of Greenhouse Gas Control, 51, 81-94. https://doi.org/10.1016/j.ijggc.2016.04.028

[48]

Li, L., Sun, S., Wang, J., Yang, W., Song, S., & Fang, Z. (2020). Experimental study of the precursor information of the water inrush in shield tunnels due to the proximity of a water-filled cave. International Journal of Rock Mechanics and Mining Sciences, 130, Article 104320. https://doi.org/10.1016/j.ijrmms.2020.104320

[49]

Louk, K., Ripepi, N., Luxbacher, K., Gilliland, E., Tang, X., Keles, C., Schlosser, C., Diminick, E., Keim, S., Amante, J., & Michael, K. (2017). Monitoring CO2 storage and enhanced gas recovery in unconventional shale reservoirs: Results from the Morgan County, Tennessee injection test. Journal of Natural Gas Science and Engineering, 45, 11-25. https://doi.org/10.1016/j.jngse.2017.03.025

[50]

Lv, C., Tang, C.-S., Zhu, C., Li, W.-Q., Chen T.-Y., Zhao, Liang, & Pan, X.-H. (2022). Environmental Dependence of Microbially Induced Calcium Carbonate Crystal Precipitations: Experimental Evidence and Insights. Journal of Geotechnical and Geoenvironmental Engineering, 148(7), Article 04022050. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002827

[51]

Ma, G., He, X., Jiang, X., Liu, H., Chu, J., & Xiao, Y. (2021). Strength and permeability of bentonite-assisted biocemented coarse sand. Canadian Geotechnical Journal, 58(7), 969-981. https://doi.org/10.1139/cgj-2020-0045

[52]

Ma, G., He, X., Xiao, Y., Chu, J., Liu, H., Stuedlein, A. W., & Evans, T. M. (2023). Spatiotemporal Evolution of Biomineralization in Heterogeneous Pore Structure. cgj- 2022-0496 Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2022-0496

[53]

Martinez, B. C., DeJong, J. T., & Ginn, T. R. (2014). Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Computers and Geotechnics, 58, 1-13. https://doi.org/10.1016/j.compgeo.2014.01.013

[54]

Min, K.-B., Rutqvist, J., & Elsworth, D. (2009). Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures. International Journal of Rock Mechanics and Mining Sciences, 46(1), 80-89. https://doi.org/10.1016/j.ijrmms.2008.04.002

[55]

Minto, J. M., Lunn, R. J., & El Mountassir, G. (2019). Development of a reactive transport model for field‐scale simulation of microbially induced carbonate precipitation. Water Resources Research, 55(8), 7229-7245. https://doi.org/10.1029/2019WR025153

[56]

Minto, J. M., MacLachlan, E., El Mountassir, G., & Lunn, R. J. (2016). Rock fracture grouting with microbially induced carbonate precipitation. Water Resources Research, 52(11), 8827-8844. https://doi.org/10.1002/2016WR018884

[57]

Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B., & Gerlach, R. (2010). Microbially enhanced carbon capture and storage by mineral-trapping and solubility- trapping. Environmental Science & Technology, 44(13), 5270-5276. https://doi.org/10.1021/es903270w

[58]

Mitchell, A. C., Phillips, A. J., Hiebert, R., Gerlach, R., Spangler, L. H., & Cunningham, A. B. (2009). Biofilm enhanced geologic sequestration of supercritical CO2. International Journal of Greenhouse Gas Control, 3(1), 90-99. https://doi.org/10.1016/j.ijggc.2008.05.002

[59]

Mitchell, A. C., Phillips, A., Schultz, L., Parks, S., Spangler, L., Cunningham, A. B., & Gerlach, R. (2013). Microbial CaCO3 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical CO2. International Journal of Greenhouse Gas Control, 15, 86-96. https://doi.org/10.1016/j.ijggc.2013.02.001

[60]

Mountassir, G. E., Lunn, R. J., Moir, H., & MacLachlan, E. (2014). Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels: Microbially Mediated Mineralization. Water Resources Research, 50(1), 1-16. https://doi.org/10.1002/2013WR013578

[61]

Myshakin, E. M., Singh, H., Sanguinito, S., Bromhal, G., & Goodman, A. L. (2019). Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs. Fuel, 246, 169-177. https://doi.org/10.1016/j.fuel.2019.02.095

[62]

Newell, D. L., & Carey, J. W. (2013). Experimental evaluation of wellbore integrity along the cement-rock boundary. Environmental Science & Technology, 47(1), 276-282. https://doi.org/10.1021/es3011404

[63]

Ng, W.-S., Lee, M.-L., & Hii, S.-L. (2012). An overview of the factors affecting microbial- induced calcite precipitation and its potential application in soil improvement. International Journal of Civil and Environmental Engineering, 6(2).

[64]

Opedal, N. V. D. T., Torsæter, M., Vrålstad, T., & Cerasi, P. (2014). Potential leakage paths along cement-formation interfaces in wellbores; implications for CO2 Storage. Energy Procedia, 51, 56-64. https://doi.org/10.1016/j.egypro.2014.07.007

[65]

Pan, X., Chu, J., & Cheng, L. (2023). Reduction of rainfall infiltration in soil slope using a controllable biocementation method. Biogeotechnics, 1(2), Article 100023. https://doi.org/10.1016/j.bgtech.2023.100023

[66]

Peng, S., Di, H., Fan, L., Fan, W., & Qin, L. (2020). Factors affecting permeability reduction of micp for fractured rock. Frontiers in Earth Science, 8, 217. https://doi.org/10.3389/feart.2020.00217

[67]

Phillips, A. J., Cunningham, A. B., Gerlach, R., Hiebert, R., Hwang, C., Lomans, B. P., Westrich, J., Mantilla, C., Kirksey, J., Esposito, R., & Spangler, L. (2016). Fracture sealing with microbially-induced calcium carbonate precipitation: a field study. Environmental Science & Technology, 50(7), 4111-4117. https://doi.org/10.1021/acs.est.5b05559

[68]

Phillips, A. J., Eldring, J. ( Joe, Hiebert, R., Lauchnor, E., Mitchell, A. C., Cunningham, A., Spangler, L., & Gerlach, R. (2015). Design of a meso-scale high pressure vessel for the laboratory examination of biogeochemical subsurface processes. Journal of Petroleum Science and Engineering, 126, 55-62. https://doi.org/10.1016/j.petrol.2014.12.008

[69]

Phillips, A. J., Lauchnor, E., Eldring, J. (Joe), Esposito, R., Mitchell, A. C., Gerlach, R., Cunningham, A. B., & Spangler, L. H. (2013). Potential CO 2 Leakage Reduction through biofilm-induced calcium carbonate precipitation. Environmental Science & Technology, 47(1), 142-149. https://doi.org/10.1021/es301294q

[70]

Phillips, A. J., Troyer, E., Hiebert, R., Kirkland, C., Gerlach, R., Cunningham, A. B., Spangler, L., Kirksey, J., Rowe, W., & Esposito, R. (2018). Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): a field scale demonstration. Journal of Petroleum Science and Engineering, 171, 1141-1148. https://doi.org/10.1016/j.petrol.2018.08.012

[71]

Rong, G., Hou, D., Yang, J., Cheng, L., & Zhou, C. (2017). Experimental study of flow characteristics in non-mated rock fractures considering 3D definition of fracture surfaces. Engineering Geology, 220, 152-163. https://doi.org/10.1016/j.enggeo.2017.02.005

[72]

Sanguinito, S., Singh, H., Myshakin, E. M., Goodman, A. L., Dilmore, R. M., Grant, T. C., Morgan, D., Bromhal, G., Warwick, P. D., Brennan, S. T., Freeman, P. A., Karacan, C.Ö., Gorecki, C., Peck, W., Burton-Kelly, M., Dotzenrod, N., Frailey, S., & Pawar, R. (2020). Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale. International Journal of Greenhouse Gas Control, 96, Article 103006. https://doi.org/10.1016/j.ijggc.2020.103006

[73]

Senger, K., Tveranger, J., Braathen, A., Olaussen, S., Ogata, K., & Larsen, L. (2015). CO2 storage resource estimates in unconventional reservoirs: Insights from a pilot-sized storage site in Svalbard, Arctic Norway. Environmental Earth Sciences, 73(8), 3987-4009. https://doi.org/10.1007/s12665-014-3684-9

[74]

Song, C., Chen, Y., & Wang, J. (2020). Plugging high-permeability zones of oil reservoirs by microbially mediated calcium carbonate precipitation. ACS Omega, 5(24), 14376-14383. https://doi.org/10.1021/acsomega.0c00902

[75]

Song, C., & Elsworth, D. (2020b). Microbially induced calcium carbonate plugging for enhanced oil recovery. Geofluids, 2020, 1-10. https://doi.org/10.1155/2020/5921789

[76]

Song, C., Elsworth, D., Jia, Y., & Lin, J. (2022). Permeable rock matrix sealed with microbially-induced calcium carbonate precipitation: Evolutions of mechanical behaviors and associated microstructure. Engineering Geology.

[77]

Song, C., & Elsworth, D. (2023). Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation. Biogeotechnics.

[78]

Song, Z., Shen, D., Liu, Z., & Wu, C. (2024). A rapid and costeffective biogrouting method for forming bio-piles considering in-situ situation. Acta Geotechnica.

[79]

Stoner, D. L., Watson, S. M., Stedtfeld, R. D., Meakin, P., Griffel, L. K., Tyler, T. L., Pegram, L. M., Barnes, J. M., & Deason, V. A. (2005). Application of Stereolithographic Custom Models for Studying the Impact of Biofilms and Mineral Precipitation on Fluid Flow. Applied and Environmental Microbiology, 71(12), 8721-8728. https://doi.org/10.1128/AEM.71.12.8721-8728.2005

[80]

Tang, C.-S., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5), 94. https://doi.org/10.1007/s12665-020-8840-9

[81]

Tobler, D. J., Minto, J. M., El Mountassir, G., Lunn, R. J., & Phoenix, V. R. (2018). Microscale analysis of fractured rock sealed with microbially induced CaCO 3 precipitation: Influence on hydraulic and mechanical performance. Water Resources Research, 54(10), 8295-8308. https://doi.org/10.1029/2018WR023032

[82]

Tongwa, P., Nygaard, R., Blue, A., & Bai, B. (2013). Evaluation of potential fracture- sealing materials for remediating CO2 leakage pathways during CO2 sequestration. International Journal of Greenhouse Gas Control, 18, 128-138. https://doi.org/10.1016/j.ijggc.2013.06.017

[83]

Turner, R., Castro, G. M., Minto, J., El Mountassir, G., & Lunn, R. J. (2023). Treatment of fractured concrete via microbially induced carbonate precipitation: From micro-scale characteristics to macro-scale behaviour. Construction and Building Materials, 384, Article 131467. https://doi.org/10.1016/j.conbuildmat.2023.131467

[84]

Van Paassen, L. A., Ghose, R., & Van Loosdrecht, M. C. M. (Van Der Linden, T. J. M., Van Der Star, W. R. L., 2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[85]

Walsh, S. D. C., Du Frane, W. L., Mason, H. E., & Carroll, S. A. (2013). Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine. Rock Mechanics and Rock Engineering, 46(3), 455-464. https://doi.org/10.1007/s00603-012-0336-9

[86]

Wang, Y., Konstantinou, C., Tang, S., & Chen, H. (2023a). Applications of microbial- induced carbonate precipitation: A state-of-the-art review. Biogeotechnics, 1(1), Article 100008. https://doi.org/10.1016/j.bgtech.2023.100008

[87]

Wang, X., & Nackenhorst, U. (2020). A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation. Advances in Water Resources, 140, Article 103563. https://doi.org/10.1016/j.advwatres.2020.103563

[88]

Wang, H., Sun, X., Miao, L., Cao, Z., Fan, G., & Wu, L. (2022). Induced CaCO3 mineral formation based on enzymatical calcification for bioremediation under different pressure conditions. Journal of Petroleum Science and Engineering, 216, Article 110787. https://doi.org/10.1016/j.petrol.2022.110787

[89]

Wang, W., & Taleghani, A. D. (2014). Three-dimensional analysis of cement sheath integrity around Wellbores. Journal of Petroleum Science and Engineering, 121, 38-51. https://doi.org/10.1016/j.petrol.2014.05.024

[90]

Wang, Y., Wang, Y., Soga, K., DeJong, J. T., & Kabla, A. J. (2023b). Microscale investigations of temperature-dependent microbially induced carbonate precipitation (MICP) in the temperature range 4-50 °C. Acta Geotechnica, 18(4), 2239-2261. https://doi.org/10.1007/s11440-022-01664-9

[91]

Wang, H., Wang, J., Sun, X., Miao, L., Shi, W., Wu, L., & Yuan, J. (2023). Erosion resistance of treated dust soils based on the combined enzymatically induced carbonate precipitation and polyacrylic acid. Biogeotechnics, 1(4), Article 100050. https://doi.org/10.1016/j.bgtech.2023.100050

[92]

Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. https://doi.org/10.1080/01490450701436505.

[93]

Wu, C., Chu, J., Wu, S., Cheng, L., & Van Paassen, L. A. (2019a). Microbially induced calcite precipitation along a circular flow channel under a constant flow condition. Acta Geotechnica, 14(3), 673-683. https://doi.org/10.1007/s11440-018-0747-1

[94]

Wu, C., Chu, J., Wu, S., & Guo, W. (2019b). Quantifying the permeability reduction of biogrouted rock fracture. Rock Mechanics and Rock Engineering, 52(3), 947-954. https://doi.org/10.1007/s00603-018-1669-9

[95]

Wu, C., Chu, J., Wu, S., & Hong, Y. (2019c). 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction. Engineering Geology, 249, 23-30. https://doi.org/10.1016/j.enggeo.2018.12.017

[96]

Wu, Z., Fan, L., Liu, Q., & Ma, G. (2017). Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method. Engineering Geology, 225, 49-60. https://doi.org/10.1016/j.enggeo.2016.08.018

[97]

Wu, C., Song, Z., Jang, B.-A., Song, H.-G., & Ni, P. (2021). Strength improvement of rock fractures and aggregates cemented with bio-slurry. Materials Letters, 305, Article 130866. https://doi.org/10.1016/j.matlet.2021.130866

[98]

Wu, J., Wang, X.-B., Wang, H.-F., & Zeng, R. J. (2017). Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Advances, 7(59), 37382-37391. https://doi.org/10.1039/C7RA05748B

[99]

Xiang, J., Qiu, J., Wang, Y., & Gu, X. (2022). Calcium acetate as calcium source used to biocement for improving performance and reducing ammonia emission. Journal of Cleaner Production, 348, Article 131286. https://doi.org/10.1016/j.jclepro.2022.131286

[100]

Xiao, Y., Wang, Y., Wang, S., Evans, T. M., Stuedlein, A. W., Chu, J., Zhao, C., Wu, H., & Liu, H. (2021). Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica.

[101]

Xu, W., Zheng, J., Chu, J., Zhang, R., Cui, M., Lai, H., & Zeng, C. (2021). New method for using N-(N-butyl)-thiophosphoric triamide to improve the effect of microbial induced carbonate precipitation. Construction and Building Materials, 313, Article 125490. https://doi.org/10.1016/j.conbuildmat.2021.125490

[102]

Yang, Y., Han, S., Liu, H., Chen, H., & Jiang, S. (2023). Influence of particle size distribution on biocarbonation method produced microbial restoration mortar for conservation of sandstone cultural relics. Biogeotechnics, 1(4), Article 100051. https://doi.org/10.1016/j.bgtech.2023.100051

[103]

Yang, W., Zhang, Q., Ranjith, P. G., Yu, R., Luo, G., Huang, C., & Wang, G. (2019). A damage mechanical model applied to analysis of mechanical properties of jointed rock masses. Tunnelling and Underground Space Technology, 84, 113-128. https://doi.org/10.1016/j.tust.2018.11.004

[104]

Yao, X., Huafeng, D., Jianlin, L., & Xingzhou, C. (2022). Shear performance and reinforcement mechanism of MICP-treated single fractured sandstone. Frontiers in Earth Science, 10, Article 905940. https://doi.org/10.3389/feart.2022.905940

[105]

Yu, X., Chu, J., Yang, Y., & Qian, C. (2021). Reduction of ammonia production in the biocementation process for sand using a new biocement. Journal of Cleaner Production, 286, Article 124928. https://doi.org/10.1016/j.jclepro.2020.124928

[106]

Zhang, Y., Hu, X., Wang, Y., & Jiang, N. (2023). A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. Biogeotechnics, 1(1), Article 100003. https://doi.org/10.1016/j.bgtech.2023.100003

[107]

Zhang, S., Liu, Z., Li, Z., Shen, D., & Wu, C. (2023). Experimental study on the reinforcement mechanism and wave thumping resistance of EICP reinforced sand slopes. Biogeotechnics, 1(4), Article 100041. https://doi.org/10.1016/j.bgtech.2023.100041

[108]

Zhao, C., Xiao, Y., He, X., Liu, H., Liu, Y., & Chu, J. (2023). Influence of injection methods on bio-mediated precipitation of carbonates in fracture-mimicking microfluidic chip. Géotechnique, 1-30. https://doi.org/10.1680/jgeot.23.00155

[109]

Zheng, J., Lai, H., Cui, M., Ding, X., Weng, Y., & Zhang, J. (2023). Bio-grouting technologies for enhancing uniformity of biocementation: A review. Biogeotechnics, 1(3), Article 100033. https://doi.org/10.1016/j.bgtech.2023.100033

[110]

Zhong, L., & Islam, M. R. (1995). A New Microbial Plugging Process and Its Impact on Fracture Remediation. All Days. SPE-30519-MS,https://doi.org/10.2118/30519-MS

[111]

Zhong, M., Liu, B., Chen, J., & Yan, G. (2022). Research on plugging characteristics of microorganism induced calcite precipitation in sandstone environment. Journal of Petroleum Science and Engineering.

[112]

Zou, L., & Cvetkovic, V. (2023). Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development. Rock Mechanics Bulletin, 2(3), Article 100061. https://doi.org/10.1016/j.rockmb.2023.100061

AI Summary AI Mindmap
PDF (7508KB)

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/