Endeavours to achieve sustainable marine infrastructures: A new “window” for the application of biomineralization in marine engineering

Xiaohao Sun , Jieling He , Hao Cui , Jinquan Shi

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) : 100098

PDF (427KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) :100098 DOI: 10.1016/j.bgtech.2024.100098
Editorial
research-article

Endeavours to achieve sustainable marine infrastructures: A new “window” for the application of biomineralization in marine engineering

Author information +
History +
PDF (427KB)

Cite this article

Download citation ▾
Xiaohao Sun, Jieling He, Hao Cui, Jinquan Shi. Endeavours to achieve sustainable marine infrastructures: A new “window” for the application of biomineralization in marine engineering. Biogeotechnics, 2024, 2(4): 100098 DOI:10.1016/j.bgtech.2024.100098

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiaohao Sun: Writing - original draft, Writing - review & editing. Jieling He: Writing - original draft, Writing - review & editing. Hao Cui: Writing - original draft, Writing - review & editing. Jinquan Shi: Writing - original draft, Writing - review & editing.

References

[1]

Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A., & Souza, L. (2019). First UK field application and performance of microcapsule-based self-healing concrete. Construction and Building Materials, 208, 669-685. https://doi.org/10.1016/j.conbuildmat.2019.02.178

[2]

Chu, J., Ivanov, V., Naeimi, M., Stabnikov, V., & Liu, H. L. (2014). Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 9, 277-285. https://doi.org/10.1007/s11440-013-0278-8

[3]

De Belie, N., Gruyaert, E., Al‐Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., & Jonkers, H. M. (2018). A review of self‐healing concrete for damage management of structures. Advanced materials interfaces, 5(17), Article 1800074. https://doi.org/10.1002/admi.201800074

[4]

De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006

[5]

Gowthaman, S., Nakashima, K., & Kawasaki, S. (2020). Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils and Foundations, 60(4), 840-855. https://doi.org/10.1016/j.sandf.2020.05.012

[6]

Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., & Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134, 341-352. https://doi.org/10.1016/j.watres.2018.01.043

[7]

Guo, N., Wang, Y., Hui, X., Zhao, Q., Zeng, Z., Pan, S., & Liu, T. (2021). Marine bacteria inhibit corrosion of steel via synergistic biomineralization. Journal of Materials Science & Technology, 66, 82-90. https://doi.org/10.1016/j.jmst.2020.03.089

[8]

Hamdan, N., & Kavazanjian Jr,E. (2016). Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique, 66(7), 546-555. https://doi.org/10.1680/jgeot.15.P.168

[9]

Jiang, N. J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182

[10]

Lin, H., Zhou, M., Li, B., & Dong, Y. (2023). Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: A review. International Biodeterioration & Biodegradation, 178, Article 105544. https://doi.org/10.1016/j.ibiod.2022.105544

[11]

Liu, T., Guo, Z., Zeng, Z., Guo, N., Lei, Y., Liu, T., & Wang, X. (2018). Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization. ACS Applied Materials & Interfaces, 10(46), 40317-40327. https://doi.org/10.1021/acsami.8b14991

[12]

Liu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. Science of the Total Environment, 860, Article 160439. https://doi.org/10.1016/j.scitotenv.2022.160439

[13]

Martinez, A., DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J.,... Zheng, J. (2022). Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges. Géotechnique, 72(8), 687-705. https://doi.org/10.1680/jgeot.20.P.170

[14]

Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D., & Verstraete, W. (2000). Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cement and Concrete Research, 30(4), 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2

[15]

Montoya, B. M., DeJong Jason, T., & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63(4), 302-312. https://doi.org/10.1680/geot.SIP13.P.019

[16]

Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: A review. Biofouling, 29(6), 715-733. https://doi.org/10.1080/08927014.2013.796550

[17]

Qian, C., Zheng, T., Zhang, X., & Su, Y. (2021). Application of microbial self-healing concrete: Case study. Construction and Building Materials, 290, Article 123226. https://doi.org/10.1016/j.conbuildmat.2021.123226

[18]

Shen, Y., Dong, Y., Yang, Y., Li, Q., Zhu, H., Zhang, W.,... Yin, Y. (2020). Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film. Bioelectrochemistry, 132, Article 107408. https://doi.org/10.1016/j.bioelechem.2019.107408

[19]

Shi, J., Xiao, Y., Carraro, J. A. H., Li, H., Liu, H., & Chu, J. (2023). Anisotropic small-strain stiffness of lightly biocemented sand considering grain morphology. Géotechnique, 1-14. https://doi.org/10.1680/jgeot.22.00350

[20]

Sun, X., Miao, L., Wang, H., Yuan, J., & Fan, G. (2021). Enhanced rainfall erosion durability of enzymatically induced carbonate precipitation for dust control. Science of The Total Environment, 791, Article 148369. https://doi.org/10.1016/j.scitotenv.2021.148369

[21]

Sun, X., Miao, L., Wang, H., Wu, L., Fan, G., & Xia, J. (2022). Sand foreshore slope stability and erosion mitigation based on microbiota and enzyme mix-induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 148(8), Article 04022058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002839

[22]

Sun, X., Wai, O. W., Xie, J., & Li, X. (2024). Biomineralization to prevent microbially induced corrosion on concrete for sustainable marine infrastructure. Environmental Science & Technology, 58(1), 522-533. https://doi.org/10.1021/acs.est.3c04680

[23]

Terzis, D., & Laloui, L. (2019). Cell-free soil bio-cementation with strength, dilatancy and fabric characterization. Acta Geotechnica, 14, 639-656. https://doi.org/10.1007/s11440-019-00764-3

[24]

Wang, Y., Sun, X., Miao, L., Wang, H., Wu, L., Shi, W., & Kawasaki, S. (2024). State-of-the- art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. Science of the Total EnvironmentArticle 169016. https://doi.org/10.1016/j.scitotenv.2023.169016

[25]

Wei, S., Jiang, Z., Liu, H., Zhou, D., & Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete: A review. Brazilian Journal of Microbiology, 44, 1001-1007. https://doi.org/10.1590/S1517-83822014005000006

[26]

Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22(11), Article 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565

[27]

Xiao, Y., Xiao, W., Wu, H., & Zaman, M. (2024). Tensile strengths and size effects of biocemented sands. International Journal of Geomechanics, 24(5), Article 06024004. https://doi.org/10.1061/IJGNAI.GMENG-9353

AI Summary AI Mindmap
PDF (427KB)

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/