Effects of microbially induced calcite precipitation on static liquefaction behavior of a gold tailings sand

Hamed Behzadipour , Abouzar Sadrekarimi

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) : 100097

PDF (6040KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) :100097 DOI: 10.1016/j.bgtech.2024.100097
Research article
research-article

Effects of microbially induced calcite precipitation on static liquefaction behavior of a gold tailings sand

Author information +
History +
PDF (6040KB)

Abstract

Loose tailings are susceptible to static liquefaction during which they lose a substantial amount of their strength. This study examines a sustainable technique known as Microbially-Induced Calcite Precipitation (MICP) to improve the static liquefaction resistance of gold mine silty sand tailings. These materials were enriched with Sporosarcina pasteurii, consolidated in a direct simple shearing apparatus, and subjected to several injections of a cementation solution. Calcified tailings were then sheared under constant-volume and constant vertical stress conditions to evaluate their undrained and drained shearing behaviors. Results showed that bio-mineralization can prevent the occurrence of static liquefaction in tailings by reducing their contraction tendency. This is demonstrated by the strong strain-hardening behaviors of the treated tailings specimens compared to the strain-softening and undrained strength loss in specimens of the untreated tailings. Substantial increases in the tailings undrained and drained shear strengths (by up to 30 - 50 kPa), improvements (by up to 5 MPa) in their tangent moduli, and more than 5° rise in their friction angles are observed in the direct simple shear tests following MICP-treatment. The critical state line of tailings is also found to be steeper and shifted to denser void ratios following MICP treatment. These changes reduce liquefaction susceptibility of tailings and enhance their resistance against static liquefaction. Post-treatment acid dissolution further indicates that CaCO3 contents of about 4% to 11% precipitated in the treated specimens. This amount decreases with increasing specimens void ratio. Changes in the microstructural fabric of the cemented tailings particles are also characterized using scanning electron microscopic (SEM) images and X-ray diffraction (XRD) analyses.

Keywords

MICP / Static liquefaction / Mine tailings / Biocementation / Direct simple shear test

Cite this article

Download citation ▾
Hamed Behzadipour, Abouzar Sadrekarimi. Effects of microbially induced calcite precipitation on static liquefaction behavior of a gold tailings sand. Biogeotechnics, 2024, 2(4): 100097 DOI:10.1016/j.bgtech.2024.100097

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This research was funded through an "Early Researcher Award" from the Ontario Ministry of Research, Innovation and Science.

CRediT authorship contribution statement

Hamed Behzadipour: Writing - original draft, Visualization, Validation, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Abouzar Sadrekarimi: Writing - review & editing, Supervision, Resources, Project administration, Investigation, Funding acquisition, Conceptualization.

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Airey, D. W., & Wood, D. M. (1987). An evaluation of direct simple shear tests on clay. Geotechnique, 37(1), 25-35. https://doi.org/10.1680/geot.1987.37.1.25.

[2]

Amarakoon, G. G. N. N., & Kawasaki, S. (2018). Factors affecting sand solidi cation using micp with pararhodobacter sp. Materials Transaction, 59(1), 72-81. https://doi.org/10.2320/matertrans.M-M2017849.

[3]

Al-Tarhouni, M., Simms, P., & Sivathayalan, S. (2011). Cyclic behaviour of reconstituted and desiccated-rewet thickened gold tailings in simple shear. Canadian Geotechnical Journal, 48(7), 1044-1060. https://doi.org/10.1139/t11-022.

[4]

Al Qabany, A., & Soga, K. (2013). Effect of chemical treatmentused in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331-339. https://doi.org/10.1680/bcmpge.60531.010.

[5]

ASTM (2014). "Standard D854: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. " Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.

[6]

ASTM (2016a). "Standard D4253: Standard test methods for maximum index density and unit weight of soils using a vibratory table. " Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.

[7]

ASTM (2016b). "Standard D4254: Standard test methods for minimum index density and unit weight of soils and calculation of relative density. " Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.

[8]

Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1-26. https://doi.org/10.1186/s40064-016-1869-2.

[9]

Barati, S., Tabatabaie Shourijeh, P., Samani, N., & Asadi, S. (2020). Stabilization of iron ore tailings with cement and bentonite: a case study on Golgohar mine. Bulletin of Engineering Geology and the Environment, 79(8), 4151-4166. https://doi.org/10.1007/s10064-020-01843-6.

[10]

Bareither, C. A., Benson, C. H., & Edil, T. (2008). Reproducibility of direct shear tests conducted on granular backfill materials. Geotechnical Testing Journal, ASTM, 31(1), 1-11. https://doi.org/10.1520/GTJ100878.

[11]

Been, K., & Jefferies, M. (1985). A state parameter for sands. Geotechnique, 35(2), 99-102.

[12]

Behzadipour, H., & Sadrekarimi, A. (2021). Biochar-assisted bio-cementation of a sand using native bacteria. Bulletin of Engineering Geology and the Environment, 80(6), 4967-4984. https://doi.org/10.1007/s10064-021-02235-0.

[13]

Behzadipour, H., & Sadrekarimi, A. (2023a). Bio-assisted improvement of shear strength and compressibility of gold tailings. Geomicrobiology Journal, 40(4), 360-371.

[14]

Behzadipour, H., & Sadrekarimi, A. (2023b). Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings. Bulletin of Engineering Geology and the Environment, 82(8), 331.

[15]

Behzadipour, H., Pakbaz, M. S., & Ghezelbash, G. R. (2019). Effects of biocementation on strength parameters of silty and clayey sands. Bioinspired Biomimetic and Nanobiomaterials, 9(1), 24-32. https://doi.org/10.1680/jbibn.19.00002.

[16]

Casagrande, A. (1936). Characteristics of cohesionless soils affecting the stability of slopes and earth fills. Journal of Boston Society of Civil Engineers, 23(1), 13-32.

[17]

Cheng, L., Cord-Ruwisch, R., & Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechincal Journal, 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023.

[18]

Cheng, L., & Shahin, M. A. (2017). Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs. Geotechnique Letters, 7(2), 146-151. https://doi.org/10.1680/jgele.16.00178.

[19]

Cole, E.R.L. (1967). "The behaviour of soils in simple shear apparatus. " Ph.D. Thesis, University of Cambridge, Cambridge, UK.

[20]

Choi, S.-G., Wu, S., & Chu, J. (2016). Biocementation for sand using an eggshell as calcium source. Journal of Geotechincal and Geoenvironmental Engineering, ASCE, 142(10), 1-4. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.

[21]

Consoli, N. C., Nierwinski, H. P., da Silva, A. P., & Sosnoski, J. (2017). Durability and strength of fiber-reinforced compacted gold tailings-cement blends. Geotext Geomembranes, 45(2), 98-102. https://doi.org/10.1016/j.geotexmem.2017.01.001.

[22]

Danjo, T., & Kawasaki, S. (2016). Microbially induced sand cementation method using pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism. Materials Transactions, 57, 428-437.

[23]

Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12(5), 971-986. https://doi.org/10.1007/s11440-017-0574-9.

[24]

DeJong, J. T., Fritzges, M. B., & Nusslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

[25]

DeJong, JT., Gomez, M. G., Waller, J. T., & Viggiani, G. (2017). Influence of bio-cementation on the shearing behavior of sand using X-ray computed tomography. Geotechnical Frontiers. Orlando, Florida: American Society of Civil Engineers (ASCE) 871-880. https://doi.org/10.1061/9780784480472.093

[26]

Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707-714.

[27]

Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 142(1).

[28]

Fourie, A. B., Blight, G. E., & Papageorgiou, G. (2001). Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Can Geotech J, 38(4), 707-719.

[29]

Gomez, M. G., DeJong, J., Byle, M. J., Johnsen, L. F., Bruce, D. A., El Mohtar, C. S.,... Richards, T. D. (2017). Engineering properties of bio-cementation improved sandy soils. Grouting, American Society of Civil Engineers (ASCE), 23, 33. https://doi.org/10.1061/9780784480793.003.

[30]

Gowthaman, S., Mitsuyama, S., Nakashima, K., Komatsu, M., & Kawasaki, S. (2019). Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil. Soils Found, 59(2), 484-499. https://doi.org/10.1016/j.sandf.2018.12.010.

[31]

Hanzawa, H., Nigel, H., Lunne, T., Tang, Y. X., & Long, M. (2007). A comparative study between the NGI direct simple shear apparatus and the Mikasa direct shear apparatus. Soils Found, 47(1), 47-58. https://doi.org/10.3208/sandf.47.47.

[32]

Harkes, M. P., van Paassena, L. A., Booster, J. L., Whiffinb, V. S., & van Loosdrechta, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004.

[33]

Hataf, N., & Baharifard, A. (2020). Reducing soil permeability using microbial induced carbonate precipitation (MICP) method: A case study of shiraz landfill soil. Geomicrobiology Journal, 37(2), 147-158. https://doi.org/10.1080/01490451.2019.1678703.

[34]

He, J., Gao, Y., Gu, Z., Chu, J., & Wang, L. (2020). Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand. Journal of Materials in Civil Engineering, 32(5), 04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.

[35]

Highter, W. H., & Tobin, R. F. (1980). Flow slides and the undrained brittleness index of some mine tailings. Engineering Geology, 16, 71-82. https://doi.org/10.1016/0013-7952(80)90008-3.

[36]

Hoang, T., Alleman, J., Cetin, B., & Choi, S.-G. (2020). Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. Journal of Materials in Civil Engineering, 32 https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.

[37]

Jefferies, M. G., & Been, K. (2006). Soil liquefaction - a critical state approach. New York: Taylor & Francis.

[38]

Jiang, N., Tang, C., Yin, L., Xie, Y., & Shi, B. (2019). Applicability of microbial calcification method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.

[39]

Karim, M. E., Rahman, M. M., Karim, M. R., Fourie, A., & Reid, D. (2023). Characteristics of copper tailings in direct simple shearing: a critical state approach. Journal of Geotechnical and Geoenvironmental Engineering, 149(5). https://doi.org/10.1061/JGGEFK.GTENG-11031.

[40]

Kuerbis, R. H., & Vaid, Y. P. (1988). Sand sample preparation - the slurry deposition method. Soils Found, 28(4), 107-118. https://doi.org/10.3208/sandf1972.28.4_107.

[41]

Lade, P. V. (1992). Static instability and liquefaction of loose fine sandy slopes. Journal of Geotechnical Engineering, ASCE, 118, 51-71. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51)

[42]

Lashkari, A., Falsafizadeh, S. R., Shourijeh, P. T., & Alipour, M. J. (2020). Instability of loose sand in constant volume direct simple shear tests in relation to particle shape. Acta Geotechnica, 15(9), 2507-2527. https://doi.org/10.1007/s11440-019-00909-4.

[43]

Lee, M., Gomez, M. G., El Kortbawi, M., & Ziotopoulou, K. (2022). Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 148(1), 1-19.

[44]

Leong, Y. K. (2021). Controlling the rheology of iron ore slurries and tailings with surface chemistry for enhanced beneficiation performance and output, reduced pumping cost and safer tailings storage in dam. Minerals Engineering, 166.

[45]

Li, C., Wang, Y., Zhou, T., Bai, S., Gao, Y., Yao, D., & Li, L. (2019). Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology. Journal of Materials in Civil Engineering, 31(7).

[46]

Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A., & Amini, F. (2016). Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering, 28(4).

[47]

Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechincal and Geoenvironmental Engineering, ASCE, 142. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.

[48]

Liu, L., Liu, H., Stuedlein, A. W., Evans, M. T., & Xiao, Y. (2019a). Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechincal Journal, 56, 1502-1513.

[49]

Liu, P., Shao, G.-H., & Huang, R.-P. (2019b). Study of the interactions between S. pasteurii and indigenous bacteria and the effect of these interactions on the MICP. Arabian Journal for Science and Engineering, 12, 724.

[50]

Liu, S., Wang, R., Yu, J., Peng, X., Cai, Y., & Tu, B. (2020). Effectiveness of the anti- erosion of an MICP coating on the surfaces of ancient clay roof tiles. Constr Build Mater, 243.

[51]

Lu, T., Wei, Z., Wang, W., Yang, Y., Cao, G., Wang, Y., & Liao, H. (2021). Experimental investigation of sample preparation and grouting technology on microbially reinforced tailings. Constr Build Mater, 312. https://doi.org/10.1016/j.conbuildmat.2021.125458.

[52]

Mafra, C., Bouzahzah, H., Stamenov, L., & Gaydardzhiev, S. (2022). An integrated management strategy for acid mine drainage control of sulfidic tailings. Minerals Engineering, 185.

[53]

Morgenstern, N.R., Vick, S.G., Viotti, C.B., and Watts, B.D. (2016). "Report in the immediate causes of the failure of the Fundão Dam." Fundão Tailings Dam Review Panel.

[54]

Montoya, B. M., & DeJong, J. (2015). Stress-strain behavior of sands cemented by microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 141(6), 1-10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.

[55]

Mortensen, B. M., Haber, M., DeJong, J. T., Caslake, L. F., & Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcite precipitation.". Journal of Applied Microbiology, 111(2), 338-349.

[56]

Nafisi, A., Safavizadeh, S., & Montoya, B. M. (2019). Influence of microbe and enzyme- induced treatments on cemented sand shear response. Journal of Geotechnical and Geoenvirionmental Engineering, ASCE, 145. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.

[57]

Nguyen, H. B. K., Rahman, M. M., & Fourie, A. (2021). The critical state behaviour of granular material in triaxial and direct simple shear condition: A DEM approach. Comput Geotech, 138.

[58]

Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G., & Schulin, R. (2020). Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J Environ Manage, 268(15), 110639. https://doi.org/10.1016/j.jenvman.2020.110639.

[59]

O’Donnell, S. T., & Kavazanjian, J. E. (2015). Stiffness and dilatancy improvements in uncemented sands treated through MICP. Journal of Geotechincal and Geoenvironmental Engineering, ASCE, 141(11).

[60]

O’Donnell, S. T., Rittmann, B. E., & Kavazanjian, E., Jr. (2017). MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II. MICP. Journal of Geotechnical and Geoenvirionmental Engineering, ASCE, 143, 12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818.

[61]

Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian Geotechincal Journal, 36, 612-624.

[62]

Plewes, H. D., O'Neil, G. D., McRoberts, E. C., & Chan, W. K. (1989). Liquefaction considerations for Suncor tailings ponds. Dam Safety Seminar. Edmonton, Alberta: BiTech Publisher, 39-50.

[63]

Pradhan, B. S., Tatsuoka, F., & Horii, N. (1988). Simple shear testing on sand in a torsional shear apparatus. Soils Found, 28(2), 95-112. https://doi.org/10.3208/sandf1972.28.2_95.

[64]

Primo, P. P. B., Antunes, M. N., Arias, A. R. L., Oliveira, A. E., & Siqueira, C. (2021). Mining dam failures in Brazil: comparing legal post-disaster decisions. International journal of environmental research and public health, 18(21). https://doi.org/10.3390/ijerph182111346.

[65]

Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere Chemosphere, 274.

[66]

Rahman, M. M., Nguyen, H. B. K., Fourie, A. B., & Kuhn, M. R. (2021). Critical state soil mechanics for cyclic liquefaction and postliquefaction behavior: DEM study. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 147(2), 1-17. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002453.

[67]

Reid, D., Fanni, R., Koh, K., & Orea, I. (2018). Characterisation of a subaqueously deposited silt iron ore tailings. Geotechnique Letters, 8, 278-283. https://doi.org/10.1680/jgele.18.00105.

[68]

Reynolds, J. (2005). Serial dilution protocols. American Society for Microbiology, 1-7.

[69]

Riveros, G. A., & Sadrekarimi, A. (2020a). Effect of microbially-induced cementation on the instability and critical state behaviors of Fraser River sand. Canadian Geotechincal Journal, 57.

[70]

Riveros, G. A., & Sadrekarimi, A. (2020b). Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation. Soil Dynamics and Earthquake Engineering, 131, 1-14.

[71]

Riveros, G.A., and Sadrekarimi, A. (2020c). "Static liquefaction behaviour of gold mine tailings." Canadian Geotechincal Journal, Just-in.

[72]

Robertson, P.K., de Melo, L., Williams, D.J., and Wilson, G.W. (2019). "Report of the expert panel on the technical causes of the failure of Feijão dam I." Expert Panel Technical Report http://www.b1technicalinvestigation.com/report.html.

[73]

Roscoe, K. H. (1970). The influence of strains in soil mechanics. Geotechnique, 20(2), 129-170. https://doi.org/10.1680/geot.1970.20.2.129.

[74]

Sadrekarimi, A. (2013). Influence of state and compressibility on liquefied strength of sands. Canadian Geotechnical Journal, 50(10), 1067-1076. https://doi.org/10.1139/cgj-2012-0395.

[75]

Schofield, A.N., and Wroth, C.P. (1968). Critical state soil mechanics, McGraw-Hill.

[76]

Small, N. (2022). "Treatment of mine tailings through two methods of calcite precipitation: (I) using natural mineral trona, (II) microbially induced calcite precipitation via denitrification." Master of Science, Montana Tech.

[77]

Shibuya, S., & Hight, D. W. (1987). On the stress path in simple shear. Géotechnique, 37(4), 511-515. https://doi.org/10.1680/geot.1987.37.4.511.

[78]

Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvirionmental Engineering, ASCE, 140(5), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.00010.

[79]

Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563-1571.

[80]

Suazo, G., Fourie, A. B., & Doherty, J. (2017). Cyclic shear response of cemented paste backfill. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 143(1), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001581.

[81]

Sun, X., Miao, L., Chen, R., Wang, H., Wu, L., & Xia, J. (2021). Liquefaction resistance of biocemented loess soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 147(11)https://doi.org/10.1061/(ASCE)GT.1943-5606.0002638.

[82]

Thunjai, T., Boyd, C. E., & Dube, K. (2001). Poind soil pH measurement. Journal of the World Aquaculture Society, 32(2), 141-152.

[83]

van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168-175. https://doi.org/10.1016/j.ecoleng.2009.03.026.

[84]

Velpuri, N.V.P., Yu, X., Lee, H.I., and Chang, W.S. (2016). "Influence factors for microbial- induced calcite precipitation in sands. " Geo-China, American Society of Civil Engineers (ASCE), Shandong, China, 44-52.

[85]

Wijewickreme, D., Dabeet, A., & Byrne, P. (2013). Some observations on the state of stress in the direct simple shear test using 3D discrete element analysis. Geotech Test J, 36(2), 292-299. https://doi.org/10.1520/GTJ20120066.

[86]

Wong, H. K. T., Gauthier, A., & Nriagu, J. O. (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Science of the Total Environment, 228(1), 35-47. https://doi.org/10.1016/S0048-9697(99)00021-2.

[87]

Wood, D. M., Drescher, A., & Budhu, M. (1979). On the determination of stress state in the simple shear apparatus. Geotechnical Testing Journal, ASTM, 2(4), 211-221. https://doi.org/10.1520/GTJ10460J.

[88]

Wu, L., Miao, L., Sun, X., & Wang, H. (2021). Enzyme-induced carbonate precipitation combined with polyvinyl alcohol to solidify aeolian sand. Journal of Materials in Civil Engineering, 33(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0004009.

[89]

Xiao, P., Liu, H., Xiao, Y., Stuedlein, A. W., & Evans, T. M. (2018). Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering, 107, 9-19. https://doi.org/10.1016/j.soildyn.2018.01.008.

[90]

Xiao, T., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of strength improvements of biocemented soils. International Journal of Geomechanics, ASCE, 22(11)https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565.

[91]

Yamamuro, J. A., & Lade, P. V. (1997). Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34(6), 905-917. https://doi.org/10.1139/t97-057.

[92]

Yoshimine, M., & Ishihara, K. (1998). Flow potential of sand during liquefaction. Soils Found, 38(3), 189-198. https://doi.org/10.3208/sandf.38.3_189.

[93]

Zamani, A., & Montoya, B. M. (2016). Permeability reduction due to microbial induced calcite precipitation in sand. Geo-ChicagoChicago, IL, 94-103.

[94]

Zamani, A., & Montoya, B. M. (2018). Undrained monotonic shear response of MICP- treated silty sands. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 144(6). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861.

[95]

Zamani, A., Xiao, P., Baumer, T., Carey, T. J., Sawyer, B., DeJong, J. T., & Boulanger, R. W. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechincal and Geoenvironmental Engineering, ASCE, 147(10).

[96]

Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.

[97]

Zhao, Y., Fan, C., Ge, F., Cheng, X., & Liu, P. (2020). Enhancing strength of MICP-treated sand with scrap of activated carbon-fiber felt. Journal of Materials in Civil Engineering, 32(4).

[98]

Zúñiga-Barra, H., Ortega-Martínez, E., Toledo-Alarcón, J., Torres-Aravena, A., Jorquera, L., Rivas, M., & Jeison, D. (2023). Potential use of microbially induced calcite precipitation for the biocementation of mine tailings. Minerals, 13(506), 1-14. https://doi.org/10.3390/min13040506.

AI Summary AI Mindmap
PDF (6040KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/