Factors affecting the effectiveness of biocementation of soil

Hanjiang Lai , Xingzhi Ding , Mingjuan Cui , Junjie Zheng , Jian Chu , Zhibo Chen

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (3) : 100087

PDF (6549KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (3) :100087 DOI: 10.1016/j.bgtech.2024.100087
Review article
research-article

Factors affecting the effectiveness of biocementation of soil

Author information +
History +
PDF (6549KB)

Abstract

Microbially or enzyme induced carbonate precipitation has emerged to be a new type of soil improvement method. However, it appears that the biocementation process is affected by many factors and a common understanding on the control factors on the biocement effect has not been reached. This paper attempts to identify the main factors that controlling the MICP or EICP effect through an in-depth discussion on the fundamentals of biocementation process. Similar to other cemented granular materials, biocemented soil is a structural soil composite consisting of soil skeleton and biocement force chain or biocement network. The strength and stiffness of the biocemented soil is controlled by the reinforcement effect of the biocement network on the soil skeleton or the interplay of the soil skeleton and precipitates. The contribution of the strength by soil skeleton is affected by the soil types and soil properties, while the contribution of the precipitates is through the distribution of the biocement network and the properties of the precipitates.

Keywords

Biocementation / Strength enhancement / Mechanism / Influencing factor

Cite this article

Download citation ▾
Hanjiang Lai, Xingzhi Ding, Mingjuan Cui, Junjie Zheng, Jian Chu, Zhibo Chen. Factors affecting the effectiveness of biocementation of soil. Biogeotechnics, 2024, 2(3): 100087 DOI:10.1016/j.bgtech.2024.100087

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Hanjiang Lai: Writing - review & editing, Writing - original draft, Funding acquisition, Data curation, Conceptualization. Xingzhi Ding: Writing - review & editing, Writing - original draft, Resources, Funding acquisition, Formal analysis, Data curation, Conceptualization. Mingjuan Cui: Writing - review & editing, Writing - original draft, Visualization, Funding acquisition, Formal analysis, Data curation, Conceptualization. Junjie Zheng: Writing - review & editing, Writing - original draft, Formal analysis, Data curation, Conceptualization. Jian Chu: Writing - review & editing, Writing - original draft, Visualization, Validation, Data curation, Conceptualization. Zhibo Chen: Writing - review & editing, Writing - original draft, Visualization, Supervision, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Mingjuan Cui is the early career editorial board member of Biogeotechnics, Junjie Zheng is the editorial board member of Biogeotechnics, and Jian Chu is the editor-in-chief for Biogeotechnics, they were not involved in the editorial review or the decision to publish this article.

Acknowledgements

The authors would like to thank the financial support by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52178319, 52108307, 51708243), and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2022J05020, 2022J05127).

References

[1]

Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., & Abdel-Gawwad, H. A. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8(3), 185-192. https://doi.org/10.1016/j.hbrcj.2013.02.001

[2]

Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting- efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001. https://doi.org/10.1061/(asce)gt.1943-5606.0000666

[3]

Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022

[4]

Bate, B., Cao, J. N., Zhang, C., & Hao, N. (2021). Spectral induced polarization study on enzyme induced carbonate precipitations: Influences of size and content on stiffness of a fine sand. Acta Geotechnica, 16(3), 841-857. https://doi.org/10.1007/s11440-020-01059-8

[5]

Blakely, R. L., & Zerner, B. (1984). Jack bean urease: The first nickel enzyme. Journal of Molecular Catalysis, 23, 263-292. https://doi.org/10.1016/0304-5102(84)80014-0

[6]

Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., & Crawford, R. (2013). Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 928-936. https://doi.org/10.1061/(asce)gt.1943-5606.0000781

[7]

Chen, Q. S., Peng, W., Tao, G. L., & Nimbalkar, S. (2020). Strength and deformation characteristics of calcareous sands improved by PFA. KSCE Journal of Civil Engineering, 25(1), 60-69. https://doi.org/10.1007/s12205-020-0458-7

[8]

Chen, Y., Tan, L. X., T., Xiao, N., Liu, K., Jia, P., & Zhang, W. (2023). The hydro-mechanical characteristics and micro-structure of loess enhanced by microbially induced carbonate precipitation. Geomechanics for Energy and the Environment, 34, Article 100469. https://doi.org/10.1016/j.gete.2023.100469

[9]

Cheng, L., Cord-Ruwisch, R., & Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023

[10]

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14, 615-626. https://doi.org/10.1007/s11440-018-0738-2

[11]

Cheng, L., Shahin, M. A., & Cord-Ruwisch, R. (2014). Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique, 64(12), 1010-1013. https://doi.org/10.1680/geot.14.t.025

[12]

Cheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376-1385. https://doi.org/10.1139/cgj-2015-0635

[13]

Cheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), Article 04016083. https://doi.org/10.1061/(asce)gt.1943-5606.0001586

[14]

Chu, J., Ivanov, V., & Naeimi, M. (2014). Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 9(2), 277-285. https://doi.org/10.1007/s11440-013-0278-8

[15]

Cui, M. J., Chu, J., & Lai, H. J. (2024a). Optimization of one-phase-low-pH enzyme induced carbonate precipitation method for soil improvement. Acta Geotechnica. https://doi.org/10.1007/s11440-023-02175-x

[16]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2021a). One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2

[17]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2022). Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement. Acta Geotechnica, 17(7), 2931-2941. https://doi.org/10.1007/s11440-021-01384-6

[18]

Cui, M. J., Lai, H. J., Wu, S. F., & Chu, J. (2024b). Comparison of soil improvement methods using crude soybean enzyme, bacterial Enzyme or bacteria induced carbonate precipitation. Géotechnique. Geotechnique, 74(1), 18-26. https://doi.org/10.1680/jgeot.21.00131

[19]

Cui, M. J., Zheng, J. J., Chu, J., Wu, C. C., & Lai, H. J. (2021b). Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica, 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0

[20]

Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12(5), 971-986. https://doi.org/10.1007/s11440-017-0574-9

[21]

Cui, M. J., Zheng, J. J., Zhang, R. J., & Lai, H. J. (2020). Soil bio-cementation using an improved 2-step injection method. Arabian Journal of Geosciences, 13(23), 1270. https://doi.org/10.1007/s12517-020-06168-y

[22]

De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2013). Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 97(3), 1335-1347. https://doi.org/10.1007/s00253-012-3997-0

[23]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[24]

Deng, W., & Wang, Y. (2018). Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Advances in Civil Engineering, 2018, 1-6. https://doi.org/10.1155/2018/9590653

[25]

Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013a). Bacillus megateriummediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World Journal of Microbiology and Biotechnology, 29, 2397-2406. https://doi.org/10.1007/s11274-013-1408-z

[26]

Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013b). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707. https://doi.org/10.4014/jmb.1212.11087

[27]

Dilrukshi, R. A. N., Nakashima, K., & Kawasaki, S. (2018). Soil improvement using plant- derived urease-induced calcium carbonate precipitation. Soils and Foundations, 58(4), 894-910. https://doi.org/10.1016/j.sandf.2018.04.003

[28]

Feng, J., Chen, B. C., Sun, W. W., & Wang, Y. (2021). Microbial induced calcium carbonate precipitation study usingBacillus subtilis with application to self-healing concrete preparation and characterization. Construction and Building Materials, 280, Article 122460. https://doi.org/10.1016/j.conbuildmat.2021.122460

[29]

Gebauer, D., Völkel, A., & Cölfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science, 322(5909), 1819-1822. https://doi.org/10.1126/science.1164271

[30]

Ham, S. M., Martinez, A., Han, G., & Kwon, T. H. (2022). Grain-scale tensile and shear strengths of glass beads cemented by MICP. Journal of Geotechnical and Geoenvironmental Engineering, 148(9), Article 04022068. https://doi.org/10.1061/(asce)gt.1943-5606.0002863

[31]

He, J., Gao, Y. F., Gu, Z. X., Chu, J., & Wang, L. Y. (2020). Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand. Journal of Materials in Civil Engineering, 32(5), Article 04020071. https://doi.org/10.1061/(asce)mt.1943-5533.0003100

[32]

Hoang, T., Alleman, J., Cetin, B., Ikuma, K., & Choi, S. G. (2019). Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP). Canadian Geotechnical Journal, 56(6), 808-822. https://doi.org/10.1139/cgj-2018-0191

[33]

Hoang, T., Alleman, J., Cetin, B., & Choi, S. G. (2020). Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. Journal of Materials in Civil Engineering, 32(4), Article 04020030. https://doi.org/10.1061/(asce)mt.1943-5533.0003083

[34]

Ismail, M. A., Joer, H. A., Randolph, M. F., & Meritt, A. (2002). Cementation of porous materials using calcite. Géotechnique, 52(5), 313-324. https://doi.org/10.1680/geot.2002.52.5.313

[35]

Ivanov, V., Chu, J., Stabnikov, V., & Li, B. (2015). Strengthening of soft marine clay using bioencapsulation. Marine Georesources & Geotechnology, 33(4), 320-324. https://doi.org/10.1080/1064119x.2013.877107

[36]

Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073

[37]

Khodadadi, T. H., Kavazanjian, E., & Bilsel, H. (2017). Mineralogy of calcium carbonate in MICP-Treated soil using soaking and injection treatment methods. Geotechnical Frontiers, 195-201. https://doi.org/10.1061/9780784480441.021

[38]

Lai, H. J., Cui, M. J., & Chu, J. (2022). Effect of pH on soil improvement using one-phase- low-pH MICP or EICP biocementation method. Acta Geotechnica, 18(6), 3259-3272. https://doi.org/10.1007/s11440-022-01759-3

[39]

Lai, H. J., Cui, M. J., Wu, S. F., Yang, Y., & Chu, J. (2021). Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotechnica, 16(5), 1457-1472. https://doi.org/10.1007/s11440-021-01149-1

[40]

Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E.,Jr (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), Article 04015066. https://doi.org/10.1061/(asce)gt.1943-5606.0001383

[41]

Liu, S. Y., Yu, J., Peng, X. Q., Cai, Y. Y., & Tu, B. X. (2020b). Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Construction and Building Materials, 248, Article 118611. https://doi.org/10.1016/j.conbuildmat.2020.118611

[42]

Liu, B., Zhu, C., Tang, C. S., Xie, Y. H., Yin, L. Y., Cheng, Q., & Shi, B. (2020a). Bio- remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 264, Article 105389. https://doi.org/10.1016/j.enggeo.2019.105389

[43]

Ma, G. L., He, X., Jiang, X., Liu, H. L., Chu, J., & Xiao, Y. (2021). Strength and permeability of bentonite-assisted biocemented coarse sand. Canadian Geotechnical Journal, 58(7), 969-981. https://doi.org/10.1139/cgj-2020-0045

[44]

Martinez, B. C., DeJong, J. D., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598. https://doi.org/10.1061/(asce)gt.1943-5606.0000787

[45]

Mujah, D., Cheng, L., & Shahin, M. A. (2019). Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31(4), Article 04019025. https://doi.org/10.1061/(asce)mt.1943-5533.0002660

[46]

Nafisi, A., Safavizadeh, S., & Montoya, B. M. (2019). Influence of microbe and enzyme- induced treatments on cemented sand shear response. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), Article 06019008. https://doi.org/10.1061/(asce)gt.1943-5606.0002111

[47]

Pan, X., Chu, J., Yang, Y., & Cheng, L. (2020). A new biogrouting method for fine to coarse sand. Acta Geotechnica, 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0

[48]

Park, S. S., Choi, S. G., & Nam, I. H. (2014). Effect of plant-induced calcite precipitation on the strength of sand. Journal of Materials in Civil Engineering, 26(8), Article 06014017. https://doi.org/10.1061/(asce)mt.1943-5533.0001029

[49]

Peng, J., Cao, T., He, J., Dai, D., & Tian, Y. (2022). Improvement of coral sand with MICP using various calcium sources in sea water environment. Frontiers in Physics, 10, Article 825409. https://doi.org/10.3389/fphy.2022.825409

[50]

Qian, C. X., Ren, X. W., Yang, R. F., & Wang, K. (2021). Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species. Biochemical Engineering Journal, 176, Article 108180. https://doi.org/10.1016/j.bej.2021.108180

[51]

Rebata-Landa, V. (2007). Microbial activity in sediments, efects on soil behavior. Georgia Institute of Technology, Atlanta.

[52]

Rong, H., Qian, C. X., & Li, L. Z. (2012). Study on microstructure and properties of sandstone cemented by microbe cement. Construction and Building Materials, 36, 687-694. https://doi.org/10.1016/j.conbuildmat.2012.06.063

[53]

Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49-55. https://doi.org/10.1016/j.ecoleng.2016.01.010

[54]

Sasaki, T., & Kuwano, R. (2016). Undrained cyclic triaxial testing on sand with non- plastic fines content cemented with microbially induced CaCO3. Soils and Foundations, 56(3), 485-495. https://doi.org/10.1016/j.sandf.2016.04.014

[55]

Song, C. P., Wang, C. Y., Elsworth, D., & Zhi, S. (2022). Compressive strength of MICP- treated silica sand with different particle morphologies and gradings. Geomicrobiology Journal, 39(2), 148-154. https://doi.org/10.1080/01490451.2021.2020936

[56]

Su, F., Wang, Y., Liu, Y., Zhang, J., Xing, L., & Zhang, S. (2023). Factors affecting soil treatment with the microbially induced carbonate precipitation technique and its optimization. Journal of Microbiological Methods, 211, Article 106771. https://doi.org/10.1016/j.mimet.2023.106771

[57]

Sun, X. H., Miao, L. C., Wu, L. Y., & Chen, R. F. (2019). Improvement of bio-cementation at low temperature based on Bacillus megaterium. Applied Microbiology and Biotechnology, 103, 7191-7202. https://doi.org/10.1007/s00253-019-09986-7

[58]

Tsesarsky, M., Gat, D., & Ronen, Z. (2016). Biological aspects of microbial-induced calcite precipitation. Environmental Geotechnics, 5(2), 69-78. https://doi.org/10.1680/jenge.15.00070

[59]

van Paassen, L. A., Ghose, R., & van Loosdrecht, M. C. M. (van der Linden, T. J. M., van der Star, W. R. L., 2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728. https://doi.org/10.1061/(asce)gt.1943-5606.0000382

[60]

Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. https://doi.org/10.1080/01490450701436505

[61]

Wu, C. Z., & Chu, J. (2020). Biogrouting method for stronger bond strength or aggregates. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), Article 06020021. https://doi.org/10.1061/(asce)gt.1943-5606.0002386

[62]

Xiao, Y., He, X., Evans, T. M., Stuedlein, A. W., & Liu, H. L. (2019b). Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), Article 04019048. https://doi.org/10.1061/(asce)gt.1943-5606.0002108

[63]

Xiao, Y., He, X., Ma, G. L., Zhao, C., Chu, J., & Liu, H. L. (2023). Biomineralization and mineralization using microfluidics: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2023.03.019

[64]

Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22(11), https://doi.org/10.1061/(asce)gm.1943-5622.0002565

[65]

Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019a). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849-1862. https://doi.org/10.1139/cgj-2018-0573

[66]

Xiao, Y., Wang, Y., Desai, C. S., Jiang, X., & Liu, H. L. (2019c). Strength and deformation responses of biocemented sands using a temperature-controlled method. International Journal of Geomechanics, 19(11), Article 04019120. https://doi.org/10.1061/(asce)gm.1943-5622.0001497

[67]

Xiao, Y., Wang, Y., Wang, S., Evans, T. M., Stuedlein, A. W., Chu, J., Zhao, C., Wu, H. R., & Liu, H. L. (2021). Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica, 16(5), 1417-1427. https://doi.org/10.1007/s11440-020-01122-4

[68]

Zamani, A., & Montoya, B. M. (2018). Undrained monotonic shear response of MICP- treated silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(6), Article 04018029. https://doi.org/10.1061/(asce)gt.1943-5606.0001861

[69]

Zeng, C., Veenis, Y., Hall, C., Young, E. S., Zheng, J. J., & Van Paassen, L. A. (Van Der Star, W. R. L., 2021). Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 147(7), https://doi.org/10.1061/(asce)gt.1943-5606.0002545

[70]

Zhang, Y., Guo, H. X., & Cheng, X. H. (2015). Role of calcium sources in the strength and microstructure of microbial mortar. Construction and Building Materials, 77, 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040

[71]

Zhang, Q., Ye, W. M., Liu, Z. R., Wang, Q., & Chen, Y. G. (2023). Influence of injection methods on calcareous sand cementation by EICP technique. Construction and Building Materials, 363, Article 129724. https://doi.org/10.1016/j.conbuildmat.2022.129724

[72]

Zhang, J. W., Yin, Y., Shi, W. P., Song, D. Q., Yu, L., Shi, L., & Han, Z. G. (2023). Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling. Case Studies in Construction Materials, 18, Article e01802. https://doi.org/10.1016/j.cscm.2022.e01802

[73]

Zhao, C., Xiao, Y., He, X., Liu, H. L., Liu, Y., & Chu, J. (2023). Influence of injection methods on bio-mediated precipitation of carbonates in fracture-mimicking microfluidic chip. Géotechnique. https://doi.org/10.1680/jgeot.23.00155

AI Summary AI Mindmap
PDF (6549KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/