Enhancing carbon neutrality: A perspective on the role of Microbially Induced Carbonate Precipitation (MICP)

Chaolin Fang , Varenyam Achal

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (2) : 100083

PDF (3941KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (2) :100083 DOI: 10.1016/j.bgtech.2024.100083
Mini review
research-article

Enhancing carbon neutrality: A perspective on the role of Microbially Induced Carbonate Precipitation (MICP)

Author information +
History +
PDF (3941KB)

Abstract

Microbially Induced Carbonate Precipitation (MICP) presents a promising avenue for sustainable carbon management, offering a rapid alternative to natural carbonate formation. This paper explores the potential of MICP, particularly through ureolysis, in carbon storage and greenhouse gas mitigation. Urease-producing bacteria play a key role by converting CO2 into calcium carbonate (CaCO3). These microbes thrive in various environments, from soils to construction sites, making MICP a versatile tool for Carbon Capture and Storage (CCS). This process not only results in the formation of solid carbonates but also effectively sequesters CO2, positioning MICP as a transformative approach for climate change mitigation. The article highlights MICP’s capacity to harness microbial activities for environmental benefits, emphasizing its importance in reducing atmospheric CO2 levels and contributing to a more sustainable future.

Keywords

Biomineralization / Calcium carbonate / Carbon Capture and Storage (CCS) / MICP / Urease

Cite this article

Download citation ▾
Chaolin Fang, Varenyam Achal. Enhancing carbon neutrality: A perspective on the role of Microbially Induced Carbonate Precipitation (MICP). Biogeotechnics, 2024, 2(2): 100083 DOI:10.1016/j.bgtech.2024.100083

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Varenyam Achal: Writing - review & editing, Writing - original draft, Investigation, Conceptualization. Chaolin Fang: Formal analysis, Writing - original draft.

Declaration of Competing Interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Varenyam Achal is editorial board member and was not involved in the editorial review or the decision to publish this article.

References

[1]

Achal, V., Mukherjee, A., Kumari, D., & Zhang, Q. (2015). Biomineralization for sustainable construction - A review of processes and applications. Earth-Science Reviews, 148, 1-17. https://doi.org/10.1016/j.earscirev.2015.05.008

[2]

Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201-202, 178-184. https://doi.org/10.1016/j.jhazmat.2011.11.067

[3]

Allen, M., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., & Kainuma, M. (2018). Special Report:Global Warming of 1.5C. Intergovernmental Panel on Climate Change ((IPCC)).

[4]

Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5, 17. https://doi.org/10.3389/fenrg.2017.00017

[5]

Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Frontiers in Materials, 6, 126. https://doi.org/10.3389/fmats.2019.00126

[6]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[7]

DeJong, J. T., Soga, K., Kavazanjian, E., Burns, S., van Paassen, L. A., Al Qabany, A.,... Weaver, T. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Geotechnique, 63(4), 287-301.

[8]

Dupraz, S., Ménez, B., Gouze, P., Leprovost, R., Bénézeth, P., Pokrovsky, O. S., & Guyot, F. (2009). Experimental approach of CO2 biomineralization in deep saline aquifers. Chemical Geology, 265, 54-62. https://doi.org/10.1016/j.chemgeo.2008.12.012

[9]

Ebigbo, A., Phillips, A., Gerlach, R., Helmig, R., Cunningham, A. B., Class, H., & Spangler, L. H. (2012). Darcy‐scale modeling of microbially induced carbonate mineral precipitation in sand columns. Water Resources Research, 48(7), https://doi.org/10.1029/2011WR011714

[10]

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1, 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[11]

Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. F., Goodman, S. C., Chapman, W. E., Cameron, M. A., et al. (2017). 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule, 1(1), 108-121.

[12]

Jain, S., Fang, C., & Achal, V. (2021). A critical review on microbial carbonate precipitation via denitrification process in building materials. Bioengineered, 12, 7529-7551. https://doi.org/10.1080/21655979.2021.1979862

[13]

Jroundi, F., Schiro, M., Ruiz-Agudo, E., Elert, K., Martin-Sanchez, I., Gonzalez-Munoz, M. T., & Rodriguez-Navarro, C. (2017). Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nature Communications, 8, 279.

[14]

Karatas, I. (2008). Microbiological Improvement of the Physical Properties of Soils. Arizona State University,.

[15]

Koohestanian, E., Sadeghi, J., Mohebbi-Kalhori, D., Shahraki, F., & Samimi, A. (2018). A novel process for CO2 capture from the flue gases to produce urea and ammonia. Energy, 144, 279-285. https://doi.org/10.1016/j.energy.2017.12.034

[16]

Lai, H., Ding, X., Cui, M., Zheng, J., Chen, Z., Pei, J., & Zhang, J. (2023). Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review. Biogeotechnics, 1, Article 100039.

[17]

Landa-Marbán, D., Tveit, S., Kumar, K., & Gasda, S. E. (2021). Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 106, 103256. https://doi.org/10.1016/j.ijggc.2021.103256

[18]

Li, W., Fishman, A., & Achal, V. (2022). Whole cell evaluation and the enzymatic kinetic study of urease from ureolytic bacteria affected by potentially toxic elements. Microbiological Research, 265, 127208. https://doi.org/10.1016/j.micres.2022.127208

[19]

Liu, X., Qian, Y., Wu, F., Wang, Y., Wang, W., & Gu, J.-D. (2022). Biofilms on stone monuments: biodeterioration or bioprotection? Trends in Microbiology, 30, 816-819. https://doi.org/10.1016/j.tim.2022.05.012

[20]

Milani, D., Kiani, A., Haque, N., Giddey, S., & Feron, P. (2022). Green pathways for urea synthesis: A review from Australia's perspective. Sustainable Chemistry for Climate ActionArticle 100008. https://doi.org/10.1016/j.scca.2022.100008

[21]

Phillips, A. J., Lauchnor, E., Eldring, J., Esposito, R., Mitchell, A. C., Gerlach, R., Cunningham, A. B., & Spangler, L. H. (2013). Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environmental science &. technology, 47(1), 142-149.

[22]

Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., & Gonzalez-Muñoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 69(4), 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003

[23]

Ronda, C., & Wang, H. H. (2022). Engineering temporal dynamics in microbial communities. Current Opinion in Microbiology, 65, 47-55. https://doi.org/10.1016/j.mib.2021.10.009

[24]

Salmon, N., & Bañares-Alcántara, R. (2021). Green ammonia as a spatial energy vector: a review. Sustainable Energy & Fuels, 5, 2814-2839.

[25]

Saracho, A. C., & Marek, E. J. (2024). Uncovering the dynamics of urease and carbonic anhydrase genes in ureolysis, carbon dioxide hydration, and calcium carbonate precipitation. Environmental Science & Technology, 58, 1199-1210. https://doi.org/10.1021/acs.est.3c06617

[26]

Schweitzer, H., Aalto, N. J., Busch, W., Chan, D. T. C., Chiesa, M., Elvevoll, E. O., Gerlach, R., Krause, K., Mocaer, K., Moran, J. J., Noel, J. P., Patil, S. K., Schwab, Y., Wijffels, R. H., Wulff, A., Øvreås, L., & Bernstein, H. C. (2021). Innovating carbon-capture biotechnologies through ecosystem-inspired solutions. One Earth, 4, 49-59. https://doi.org/10.1016/j.oneear.2020.12.006

[27]

Service, R. F. (2018). Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon (DOI: org/) Science.. https://doi.org/10.1126/science.aau7489

[28]

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B.,... Gasser, T. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6, 42-50. https://doi.org/10.1038/nclimate2870

[29]

Tveit, S., Pettersson, P., & Landa-Marbán, D. (2020). Optimizing sealing of CO2 leakage paths with microbially induced calcite precipitation under uncertainty. In ECMOR XVII. European Association of Geoscientists & Engineers, 2020(1), 1-12. https://doi.org/10.3997/2214-4609.202035087

[30]

van Paassen, L. A., Ghose, R., & van Loosdrecht, M. C. M. (van der Linden, T. J. M., van der Star, W. R. L., 2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[31]

Wang, K., Wu, S., & Chu, J. (2023a). Mitigation of soil liquefaction using microbial technology: An overview. Biogeotechnics, 1, Article 100005.

[32]

Wang, S., Shen, T., Tian, R., & Li, X. (2023b). Uniformity evaluation and improvement technology of sandy clayey purple soil enhanced through microbially-induced calcite precipitation. Biogeotechnics, 1, Article 100048.

[33]

Wang, Y., Konstantinou, C., Tang, S., & Chen, H. (2023c). Applications of microbial-induced carbonate precipitation: A state-of-the-art review. Biogeotechnics, 1, Article 100008.

[34]

Yu, T., Souli, H., Péchaud, Y., & Fleureau, J. M. (2022). Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement-a review. European Journal of Environmental and Civil Engineering, 26(6), 2218-2233. https://doi.org/10.1080/19648189.2020.1755370

[35]

Yu, X., & Xu, Y. (2023). OAs and CAB capture CO2 and conversion to carbonates and its potential applications in civil engineering. Journal of Building Engineering, 66, 105904. https://doi.org/10.1016/j.jobe.2023.105904

[36]

Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in Bioengineering and Biotechnology, 4, 4. https://doi.org/10.3389/fbioe.2016.00004

[37]

Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/ Technology, 1, 3-7. https://doi.org/10.1023/A:1015135629155.

AI Summary AI Mindmap
PDF (3941KB)

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/