Cementor: A toolbox to generate bio-cemented soils with specific microstructures

Aoxi Zhang , Anne-Catherine Dieudonné

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (3) : 100081

PDF (4274KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (3) :100081 DOI: 10.1016/j.bgtech.2024.100081
Research article
research-article

Cementor: A toolbox to generate bio-cemented soils with specific microstructures

Author information +
History +
PDF (4274KB)

Abstract

Bio-cemented soils can exhibit various types of microstructure depending on the relative position of the carbonate crystals with respect to the host granular skeleton. Different microstructures can have different effects on the mechanical and hydraulic responses of the material, hence it is important to develop the capacity to model these microstructures. The discrete element method (DEM) is a powerful numerical method for studying the mechanical behaviour of granular materials considering grain-scale features. This paper presents a toolbox that can be used to generate 3D DEM samples of bio-cemented soils with specific microstructures. It provides the flexibility of modelling bio-cemented soils with precipitates in the form of contact cementing, grain bridging and coating, and combinations of these distribution patterns. The algorithm is described in detail in this paper, and the impact of the precipitated carbonates on the soil microstructure is evaluated. The results indicate that carbonates precipitated in different distribution patterns affect the soil microstructure differently, suggesting the importance of modelling the microstructure of bio-cemented soils.

Keywords

Bio-cemented soils / Discrete element method / Microstructure

Cite this article

Download citation ▾
Aoxi Zhang, Anne-Catherine Dieudonné. Cementor: A toolbox to generate bio-cemented soils with specific microstructures. Biogeotechnics, 2024, 2(3): 100081 DOI:10.1016/j.bgtech.2024.100081

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Aoxi Zhang: Writing - original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis. Anne-Catherine Dieudonné: Writing - review & editing, Supervision, Resources, Methodology, Conceptualization.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Aoxi Zhang reports financial support was provided by China Scholarship Council. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The first author acknowledges support from the China Scholarship Council (CSC) and the Geo-Engineering Section of Delft University of Technology.

References

[1]

Chen, X., Guo, H., & Cheng, X. (2017). Heavy metal immobilisation and particle cementation of tailings by biomineralisation. Environmental Geotechnics, 5, 107-113. https://doi.org/10.1680/jenge.15.00068

[2]

Cheng, L., Cord-Ruwisch, R., & Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50, 81-90. https://doi.org/10.1139/cgj-2012-0023

[3]

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14, 615-626. https://doi.org/10.1007/s11440-018-0738-2

[4]

Cheng, L., Shahin, M. A., & Mujah, D. (2016). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143, Article 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.00015

[5]

ClaraSaracho, A., Haigh, S. K., & EhsanJorat, M. (2021). Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand. Géotechnique, 71, 1135-1149. https://doi.org/10.1680/jgeot.19.P.350

[6]

Dadda, A., Geindreau, C., Emeriault, F., DuRoscoat, S. R., Garandet, A., Sapin, L., & Filet, A. E. (2017). Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography. Acta Geotechnica, 12, 955-970. https://doi.org/10.1007/s11440-017-0578-5

[7]

Dai, B., Yang, J., & Luo, X. (2015). A numerical analysis of the shear behavior of granular soil with fines. Particuology, 21, 160-172. https://doi.org/10.1016/j.partic.2014.08.010

[8]

Darby, K. M., Hernandez, G. L., DeJong, J. T., Boulanger, R. W., Gomez, M. G., & Wilson, D. W. (2019). Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 145, 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122

[9]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[10]

Elmaloglou, A., Terzis, D., De Anna, P., & Laloui, L. (2022). Microfluidic study in a meterlong reactive path reveals how the medium’s structural heterogeneity shapes MICPinduced biocementation. Scientific Reports, 12, 19553.

[11]

Feng, K., Montoya, B., & Evans, T. (2017). Discrete element method simulations of biocemented sands. Computers and Geotechnics, 85, 139-150. https://doi.org/10.1016/j.compgeo.2016.12.028

[12]

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review. Biogeotechnics, 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[13]

Gu, X., Zhang, J., & Huang, X. (2020). DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework. Computers and Geotechnics, 128, 103787. https://doi.org/10.1016/j.compgeo.2020.103787

[14]

Hamdan, N., & Kavazanjian E., Jr. (2016). Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique, 66, 546-555. https://doi.org/10.1680/jgeot.15.P.168

[15]

He, J., Chu, J., Gao, Y., & Liu, H. (2019). Research advances and challenges in biogeotechnologies. Geotechnical Research, 6, 144-155. https://doi.org/10.1680/jgere.18.00035

[16]

Jiang, N. J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique, 67, 42-55. https://doi.org/10.1680/jgeot.15.P.182

[17]

Kajiyama, S., Wu, Y., Hyodo, M., Nakata, Y., Nakashima, K., & Yoshimoto, N. (2017). Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles. Journal of Natural Gas Science and Engineering, 45, 96-107. https://doi.org/10.1016/j.jngse.2017.05.008

[18]

Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81-85. https://doi.org/10.1016/j.ibiod.2012.06.016

[19]

Li, M., Cheng, X., Guo, H., & Yang, Z. (2016). Biomineralization of carbonate by terrabacter tumescens for heavy metal removal and biogrouting applications. Journal of Environmental Engineering, 142, C4015005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000970

[20]

Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian E., Jr. (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142, 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383

[21]

Liu, B., Zhu, C., Tang, C. S., Xie, Y. H., Yin, L. Y., Cheng, Q., & Shi, B. (2020). Bioremediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 264, 105389. https://doi.org/10.1016/j.enggeo.2019.105389

[22]

Ma, G., Xiao, Y., Fan, W., Chu, J., & Liu, H. (2022). Mechanical properties of biocement formed by microbially induced carbonate precipitation. Acta Geotechnica, 1-15.

[23]

Martinez, A., DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J.,...Boulanger, R., et al. (2022). Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges. Géotechnique, 72, 687-705. https://doi.org/10.1680/jgeot.20.P.170

[24]

Mujah, D., Cheng, L., & Shahin, M. A. (2019). Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31, Article 04019025.

[25]

Okwadha, G. D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81, 1143-1148.

[26]

Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W., & Tarantino, A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 201, 96-105. https://doi.org/10.1016/j.enggeo.2015.12.027

[27]

Shahin, M., Jamieson, K., & Cheng, L. (2020). Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes. Géotechnique Letters, 10, 211-215. https://doi.org/10.1680/jgele.19.00093

[28]

Shen, Z., Jiang, M., & Thornton, C. (2016). DEM simulation of bonded granular material. part I: contact model and application to cemented sand. Computers and Geotechnics, 75, 192-209.

[29]

Šmilauer, V., et al. (2021). Yade Documentation (3rd ed..,). The Yade Project,. 10.5281/zenodo.5705394 $\langle$http://yade-dem.org/doc/$\rangle$..

[30]

Tang, Y., & Tao, J. (2022). Multiscale analysis of rotational penetration in shallow dry sand and implications for self-burrowing robot design. Acta Geotechnica, 17, 4233-4252. https://doi.org/10.1007/s11440-022-01492-x

[31]

Terzis, D., & Laloui, L. (2018). 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Scientific Reports, 8, 1416.

[32]

Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50, 43-53.

[33]

Utili, S., & Nova, R. (2008). DEM analysis of bonded granular geomaterials. The International Journal for Numerical and Analytical Methods in Geomechanics, 32, 1997-2031. https://doi.org/10.1002/nag.728

[34]

van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136, 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[35]

Van Paassen, L. A. (2009). Biogrout, ground improvement by microbial induced carbonate precipitation. Ph.D. thesis. Delft University of Technology.

[36]

Wang, Y. H., & Leung, S. C. (2008). A particulate-scale investigation of cemented sand behavior. Canadian Geotechnical Journal, 45, 29-44. https://doi.org/10.1139/T07-070

[37]

Wang, Y. N., Li, S. K., Li, Z. Y., & Garg, A. (2023). Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in shantou using a rainfall erosion simulator. Acta Geotechnica, 1-13.

[38]

Wang, Y., Soga, K., DeJong, J. T., & Kabla, A. J. (2019). Microscale visualization of microbial- induced calcium carbonate precipitation processes. Journal of Geotechnical and Geoenvironmental Engineering, 145, 04019045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079

[39]

Wu, H., Wu, W., Liang, W., Dai, F., Liu, H., & Xiao, Y. (2023). 3D DEM modeling of biocemented sand with fines as cementing agents. International Journal for Numerical and Analytical Methods in Geomechanics, 47(2), 212-240.

[40]

Xiao, Y., He, X., Stuedlein, A. W., Chu, J., Evans, T. M., & van Paassen, L. A. (2022a). Crystal growth of MICP through microfluidic chip tests. Journal of Geotechnical and Geoenvironmental Engineering, 148, Article 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756

[41]

Xiao, Y., He, X., Wu, W., Stuedlein, A. W., Evans, T. M., Chu, J., Liu, H., van Paassen, L. A., & Wu, H. (2021a). Kinetic biomineralization through microfluidic chip tests. Acta Geotechnica, 16, 3229-3237.

[42]

Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022b). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22, Article 03122001.

[43]

Xiao, P., Liu, H., Xiao, Y., Stuedlein, A. W., & Evans, T. M. (2018). Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering, 107, 9-19. https://doi.org/10.1016/j.soildyn.2018.01.008

[44]

Xiao, Y., Stuedlein, A. W., He, X., Han, F., Evans, T. M., Pan, Z., Lin, H., Chu, J., & Van Paassen, L. (2021b). Lateral responses of a model pile in biocemented sand. International Journal of Geomechanics, 21, Article 06021027.

[45]

Xiao, Y., Xiao, W., Wu, H., Liu, Y., & Liu, H. (2022c). Fracture of interparticle MICP bonds under compression. International Journal of Geomechanics, 23, Article 04022316.

[46]

Yang, P., Kavazanjian, E., & Neithalath, N. (2019). Particle-scale mechanisms in undrained triaxial compression of biocemented sands: insights from 3D DEM simulations with flexible boundary. International Journal of Geomechanics, 19, Article 04019009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001346

[47]

Zeng, Y., Chen, Z., Lyu, Q., Cheng, Y., Huan, C., Jiang, X.,... Tan, Z. (2023). Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge. Journal of Hazardous Materials, 441, 129866. https://doi.org/10.1016/j.jhazmat.2022.129866

[48]

Zeng, C., Veenis, Y., Hall, C. A., Young, E. S., van Der Star, W. R., Zheng, J.j., & Van Paassen, L. A. (2021). Experimental and numerical analysis of a field trial application of microbially induced calcite precipitation for ground stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 147, Article 05021003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002545

[49]

Zhang, A., & Dieudonne, A. C. (2023a). Effects of carbonate distribution inhomogeneity on the improvement level of bio-cemented sands: A DEM study. International Conference of the International Association for Computer Methods and Advances in Geomechanics. Springer554-561.

[50]

Zhang, A., & Dieudonne, A. C. (2023b). Effects of carbonate distribution pattern on the mechanical behaviour of bio-cemented sands: A DEM study. Computer and Geotechnics, 154, Article 105152.

[51]

Zhang, W., Xiang, J., Huang, R., & Liu, H. (2023). A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & excavation strategies. Biogeotechnics, 1, 100025. https://doi.org/10.1016/j.bgtech.2023.100025

AI Summary AI Mindmap
PDF (4274KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/