Hydraulic characteristics and incubation methods for enhancing durability of Fungi- Mycelium treated silica sand using Rhizopus oligosporus and Rhizopus oryzae combination

Aswin Lim , Jonathan Yosuardi Sunaryo , Martin Wijaya , Alfrendo Satyanaga , Anastasia Prima Kristijarti

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (1) : 100066

PDF (7517KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (1) :100066 DOI: 10.1016/j.bgtech.2023.100066
Research article
research-article

Hydraulic characteristics and incubation methods for enhancing durability of Fungi- Mycelium treated silica sand using Rhizopus oligosporus and Rhizopus oryzae combination

Author information +
History +
PDF (7517KB)

Abstract

Nowadays, the application of Fungi as a bio-mediated soil improvement technique is developing. The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown, and the treated sample tends to have low durability. This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand. The fungi used in the experiments are a combination of Rhizopus oligosporus and Rhizopus oryzae, which are popular for making Tempeh, a local soybean cuisine from Indonesia. The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil. The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil. In addition, the Soil-Water Characteristic Curve of the treated soil also developed. The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil. The curing method outside the mold (O-method) with 10% Tempeh inoculum, and 5% Tempeh inoculum with 5% rice flour is proven can extend the durability of the treated sample, the undrained compressive strength is about 40 kPa on day 14. Scanning electron microscope was performed on the samples, which lasted for 4 months. The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour. When the mycelium covered all the sand particles and filled the pores, the water flow was partially blocked. It might be attributed to the strong hydrophobicity of the fungi, which could prevent water from penetrating the soil.

Keywords

Silica sand / Rhizopus oligosporus / Rhizopus oryzae / Fungi-Mycelium treated soil / Shear strength / Permeability / SWCC / Durability

Cite this article

Download citation ▾
Aswin Lim, Jonathan Yosuardi Sunaryo, Martin Wijaya, Alfrendo Satyanaga, Anastasia Prima Kristijarti. Hydraulic characteristics and incubation methods for enhancing durability of Fungi- Mycelium treated silica sand using Rhizopus oligosporus and Rhizopus oryzae combination. Biogeotechnics, 2024, 2(1): 100066 DOI:10.1016/j.bgtech.2023.100066

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Aswin Lim: Writing - review & editing, Writing - original draft, Validation, Supervision, Project administration, Methodology, Conceptualization. Jonathan Yosuardi Sunaryo: Writing - review & editing, Writing - original draft, Visualization, Resources, Formal analysis, Conceptualization. Martin Wijaya: Writing - review & editing, Writing - original draft, Supervision, Formal analysis, Conceptualization. Alfrendo Satyanaga: Writing - review & editing, Supervision, Conceptualization. Anastasia Prima Kristijarti: Writing - review & editing, Visualization, Formal analysis.

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the research facility provided by Parahyangan Catholic University.

Declaration of Competing Interest

The authors declare that there is no conflict of interest. Aswin Lim is the editorial board member for Biogeotechnics and was not involved in the editorial review or the decision to publish this article.

References

[1]

Bishop, A.W. (1971). Shear strength parameters for undisturbed and remoulded soil specimens. In Proceedings of the Roscoe Memorial Symposium, Cambridge University, Cambridge, Mass., 3-58.

[2]

Bozyigit, I., Javadi, A., & Altun, S. (2021). Strength properties of xanthan gum and guar gum treated kaolin at different water contents. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1160-1172. https://doi.org/10.1016/j.jrmge.2021.06.007

[3]

Chang, I., Im, J., & Cho, G. C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(251), https://doi.org/10.3390/su8030251

[4]

Chang, I., Lee, M., Tran, A. T., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation GeotechnicsArticle 100385. https://doi.org/10.1016/j.trgeo.2020.100385

[5]

Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64(4), 1479-1486. https://doi.org/10.2136/sssaj2000.6441479x

[6]

Chuo, S. C., Mohamed, S. F., Mohd Setapar, S. H., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A., & Ibrahim, M. N. Mohamad (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 4993. https://doi.org/10.3390/ma13214993

[7]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2022). Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement. Acta Geotechnica, 17(7), 2931-2941. https://doi.org/10.1007/s11440-021-01384-6

[8]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2021). One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 16, 481-489. https://doi.org/10.1007/s11440-020-01043-2

[9]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210.

[10]

Diaz, B. H. C., Aparicio, A. J., Chanona-Perez, J. J., Calderon-Dominguez, G., Alamilla- Beltran, L., Hernandez-Sanchez, H., & Guiterrez-Lopez, G. F. (2010). Morphological characterization of the growing front of Rhizopus oligosporus in solid media. Journal of Food Engineering, 101(3), 309-317.

[11]

Fredlund, D., Xing, A., & Huang, S. (1994). Predicting the permeability function for unsaturated soils-water characteristic curve. Canadian Geotechnical Journal, 31(4), 533-546. https://doi.org/10.1139/t94-062

[12]

Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. A. (2017). Geotechnical perspective of raw earth building. Acta Geotechica, 12, 463-478. https://doi.org/10.1007/s11440-016-0521-1

[13]

Gou, L., & Li, S. (2023). Dynamic shear modulus and damping of lightweight sand-mycelium soil. Acta Geotechnica. https://doi.org/10.1007/s11440-023-01885-6

[14]

Jiang, N. J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Geotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182

[15]

Kwon, Y. M., Moon, J. H., Cho, G. C., Kim, Y. U., & Chang, I. (2023). Xanthan gum biopolymer-based soil treatment as a construction material to mitigate internal erosion of earthen embankment: A field-scale. Construction and Building Materials, 389, Article 131716. https://doi.org/10.1016/j.conbuildmat.2023.131716

[16]

Li, S., Wang, Z., & Stutz, H. H. (2023). State-of-the-art review on plant-based solutions for soil improvement. Biogeotechnics, 1, Article 100035.

[17]

Lim, A., & Pianica, L. (2022). Efek Gradasi Tanah Pasir Pada Penggunaan Jamur Rhizopus Olisgosporus untuk Perbaikan Tanah Pasir Lepas. (In:Bahasa Indonesia) Jurnal Aplikasi Teknik Sipil, 20(2), 157-163. https://doi.org/10.12962/j2579-891X.v20i2.9769

[18]

Lim, A., Atmaja, P. C., & Rustiani, S. (2020). Bio-mediated soil improvement of loose sand with fungi. Rock Mechanics and Geotechnical Engineering, 12(1), 180-187. https://doi.org/10.1016/j.jrmge.2019.09.004

[19]

Lim, A., Henzi, P., & Arvin, O. (2023). Comparison of pleuorotus ostreatus and Rhizopus oligosporus fungi for loose sand imrpovement. Journal of Engineering, 18(1), 1-10. https://doi.org/10.6310/jog.202303_18(1).1

[20]

Lim, A., Iskandar, M. R., & Albrecht, Y. (2021). Improvement of soil shear strength using glucomannan biopolymer for loose sand. Earth and Environmental Science, 871. https://doi.org/10.1088/1755-1315/871/1/012056

[21]

Liu, B., Xie, Y. H., Tang, C. S., Pan, X. H., Jiang, N. J., Singh, D. N., Cheng, Y. J., & Shi, B. (2021). Bio-mediated method for improving surface erosion resistance of clayey soils. Engineering Geology, 239, Article 106295. https://doi.org/10.1016/j.enggeo.2021.106295

[22]

Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598. https://doi.org/10.1016/S0038-0717(98)00155-2

[23]

Metz, B., Davidson, O., Coninck Hd, Loos, M., & Meyer, L. (2005). Carbon dioxide capture and storage. New York: Intergovernmental Panel on Climate Change.

[24]

Narainsamy, Y., & Jacobsz, S.W. (2022). A review of methods for estimating undrained brittleness index from the CPT. Cone Penetration Testing 2022. CRC Press.

[25]

Oss, H.G.V. (2014). Cement statistics and information. Reston, VA: US Geological Survey.

[26]

Oades, J. M., & Waters, A. G. (1991). Aggregate Hierarchy in Soils. Australian Journal of Soil Research, 29(6), 815-828.

[27]

Pan, X. H., Chu, J., Yang, Y., & Cheng, L. (2020). A new biogrouting method for fine to coarse sand. Acta Geotechnica, 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0

[28]

Park, J. S., Lin, H., Moe, W. M., & Salifu, E. (2023). Hydraulic properties of sands treated with fungal mycelium of Trichoderma virens. Journal of Geotechnical and Geoenvironmental Enginering, 149, 11. https://doi.org/10.1061/JGGEFK.GTENG-1111

[29]

Salifu, E. (2019). Engineering Fungal-Mycelia for Soil Improvement. Italia: Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Civile, Edile e Ambientale.

[30]

Salifu, E., & El Mountassir, G. (2020). Fungal-induced water repellency in sand. Geotechnique, 71(7), 608-615. https://doi.org/10.1680/jgeot.19.P.341

[31]

Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17(2), 97-124. https://doi.org/10.1080/01490450050023791

[32]

Sulistiawati, B. H., Yasuhara, H., Kinoshita, N., & Putra, H. (2020). Examination of Calcite Precipitation using Plant-Derived Urease Enzyme for Soil Improvement. International Journal of Geomate, 19(72), 231-237. https://doi.org/10.21660/2020.72.9481

[33]

United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/ NO. 3.

[34]

Wijaya, M., & Leong, E. (2016). Equation for unimodal and bimodal soil-water-characeristic curves. Soils and Foundation, 56(2), 291-300. https://doi.org/10.1016/j.sandf.2016.02.011

[35]

Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annu Rev Energy Env, 26, 303-329. https://doi.org/10.1146/annurev.energy.26.1.303

[36]

Yang, Y., Chu, J., Xiao, Y., Liu, H. L., & Cheng, L. (2019). Seepage control in sand using bioslurry. Construction and Building Materials, 212, 342-349. https://doi.org/10.1016/j.conbuildmat.2019.03.313

[37]

Yin, L., Luo, X., Zhang, Y., Zheng, W., Yin, F., & Fu, Y. (2020). Comparative proteomic analysis of Rhizopus oryzae hyphae displaying filamentous and pellet morphology. 3 Biotech, 10(11), Article 469. https://doi.org/10.1007/s13205-020-02458-0

[38]

Zhang, X., Fan, X., Wang, C., & Yu, X. (2022). A novel method to improve the soil erosion resistance with fungi. Acta Geotechnica, 18, 2827-2845. https://doi.org/10.1007/s11440-022-01673-8

[39]

Zheng, J., Lai H., Cui, Ding, X., Weng, Y., & Zhang, J. (2023). Bio-grouting technologies for enhancing uniformity of biocementation:A review. Biogeotechnics, 1(1) Article 100033.

AI Summary AI Mindmap
PDF (7517KB)

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/