Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design

Ye Wang , Wenxin Xiao , Danqian Wang , Jingfeng Wang

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (1) : 100064

PDF (11283KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (1) :100064 DOI: 10.1016/j.bgtech.2023.100064
Research article
research-article

Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design

Author information +
History +
PDF (11283KB)

Abstract

Ancient cultural relics built of red sandstone have high historical value. However, due to the acceleration of the industrialization process of human civilization, increasingly frequent acid rain has caused irreversible damage to the surface of red sandstone artifacts. In this research, a fluor-silane modified nano-calcium carbonate (CaCO3) was prepared as a biomimetic hydrophobic coating for the conservation of red sandstone inspired by the lotus leaf effect. Characterizations and immersion tests were carried out to assess the protective properties of the coating. XRD, FT-IR, TEM and SEM were combined to characterize the morphology of the coating. In addition, the water contact angle was measured before and after immersion in the simulated acid rain. The results indicate that this kind of hydrophobic nano-CaCO3 coating effectively protected the sandstone from the deleterious effects of acid rain.

Keywords

Red sandstone / Nano CaCO3 / Acid rain corrosion / Hydrophobicity

Cite this article

Download citation ▾
Ye Wang, Wenxin Xiao, Danqian Wang, Jingfeng Wang. Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design. Biogeotechnics, 2024, 2(1): 100064 DOI:10.1016/j.bgtech.2023.100064

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Ye Wang: Writing - original draft, Methodology, Investigation, Conceptualization. Wenxin Xiao: Investigation. Danqian Wang: Visualization, Supervision. Jingfeng Wang: Supervision, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2021YFB3701100), the Natural Science Foundation Commission of China (Grant No. U20A20234 and 51874062), Chongqing Foundation and Advanced Research Project (Grant No. cstc2019jcyj-zdxmX0010), the Science and Technology Major Project of Shanxi Province (No. 20191102008).

References

[1]

Ali, A. M., Yahya, N., & Qureshi, S. (2020). Interactions of ferro-nanoparticles (hematite and magnetite) with reservoir sandstone: implications for surface adsorption and interfacial tension reduction. Petroleum Science, 17(4), 1037-1055. https://doi.org/10.1007/s12182-019-00409-w

[2]

Amalia Yunia Rahmawati. (2020). Geosciences in Archaeometry Methods and Case Studies.

[3]

Cappelletti, G., Fermo, P., & Camiloni, M. (2015). Smart hybrid coatings for natural stones conservation. Progress in Organic Coatings, 78, 511-516. https://doi.org/10.1016/j.porgcoat.2014.05.029

[4]

Chen, S. F., Yu, S. H., Hang, J., Li, F., & Liu, Y. (2006). Polymorph discrimination of CaCO3 mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chemistry of Materials, 18(1), 115-122. https://doi.org/10.1021/cm0519028

[5]

Chen, Y., Han, Y., Zhang, X., Sarajpoor, S., Zhang, S., & Yao, X. (2023). Experimental study on permeability and strength characteristics of MICP-treated calcareous sand. Biogeotechnics, 1(3), Article 100034. https://doi.org/10.1016/j.bgtech.2023.100034

[6]

Du, H., & Amstad, E. (2020). Water:How does it influence the CaCO3 dormation? Angewandte Chemie - International Edition, 59(5), 1798- 1816. https://doi.org/10.1002/anie.201903662

[7]

Han, T. Y., Shr, J. F., Wu, C. F., & Hsieh C.Te (2007). A modified Wenzel model for hydrophobic behavior of nanostructured surfaces. Thin Solid Films, 515(11), 4666-4669. https://doi.org/10.1016/j.tsf.2006.11.008

[8]

Jamesh, M., Kumar, S., & Sankara Narayanan, T. S. N. (2011). Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution - Long term evaluation by EIS. Corrosion Science, 53(2), 645-654. https://doi.org/10.1016/j.corsci.2010.10.011

[9]

Kang, Z., Zhang, J., & Niu, L. (2018). A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties. Surface and Coatings Technology, 334(November 2017), 84-89. https://doi.org/10.1016/j.surfcoat.2017.11.007

[10]

Kou, H., He, X., Li, Z., Fang, W., Zhang, X., An, Z., & Wu, Y. (2023). Biogeotechnics Effect of drying-wetting cycles on the durability of calcareous sand reinforced by MICP and recycled shredded coconut coir (RSC). BiogeotechnicsArticle 100038. https://doi.org/10.1016/j.bgtech.2023.100038

[11]

Kulinich, S. A., & Farzaneh, M. (2009). Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Applied Surface Science, 255(7), 4056-4060. https://doi.org/10.1016/j.apsusc.2008.10.109

[12]

Li, S., Huang, M., Cui, M., Xu, K., & Jin, G. (2023a). Thermal and mechanical properties of bio-cemented quartz sand mixed with steel slag. Biogeotechnics, 1(3), Article 100036. https://doi.org/10.1016/j.bgtech.2023.100036

[13]

Li, Y., Li, Y., Guo, Z., & Xu, Q. (2023b). Durability of MICP-reinforced calcareous sand in marine environments: Laboratory and field experimental study. Biogeotechnics, 1(2), Article 100018. https://doi.org/10.1016/j.bgtech.2023.100018

[14]

Lu, Z., Wang, P., & Zhang, D. (2015). Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment. Corrosion Science, 91, 287-296. https://doi.org/10.1016/j.corsci.2014.11.029

[15]

Munafò P., Goffredo, G. B., & Quagliarini, E. (2015). TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Construction and Building Materials, 84, 201-218. https://doi.org/10.1016/j.conbuildmat.2015.02.083

[16]

Ng, W. F., Wong, M. H., & Cheng, F. T. (2010). Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks’ solution. Surface and Coatings Technology, 204(11), 1823-1830. https://doi.org/10.1016/j.surfcoat.2009.11.024

[17]

Potysz, A., & Bartz, W. (2023). Dissolution of red sandstones exposed to siderophore- producing bacterium Pseudomonas fluorescens: Experimental bioweathering coupled to a geochemical model. Construction and Building Materials, 369, Article 130584. https://doi.org/10.1016/j.conbuildmat.2023.130584

[18]

Rodrigues, J. D. (2001). Consolidation of decayed stones. A delicate problem with few practical solutions. Historical Constructions, 3-14.

[19]

Roksana, K., Aluthgun, S., Montalbo, M., & Tang, C. (2023). Biogeotechnics Desiccation cracking remediation through enzyme induced calcite precipitation in fine-grained soils under wetting drying cycles. BiogeotechnicsArticle 100049. https://doi.org/10.1016/j.bgtech.2023.100049

[20]

Sun, B., Zhang, P., Shen, X., & Liu, Y. (2021). Characterizing-water seepage damage in the chest-abdomen area of the Leshan Giant Buddha. Japanese Geotechnical Society Special Publication, 9(8), 403-411. https://doi.org/10.3208/jgssp.v09.cpeg087

[21]

Wang, G., Chai, Y., Li, Y., Luo, H., Zhang, B., & Zhu, J. (2023a). Sandstone protection by using nanocomposite coating of silica. Applied Surface Science, 615(2022), Article 156193. https://doi.org/10.1016/j.apsusc.2022.156193

[22]

Wang, G. G., Zhu, L. Q., Liu, H. C., & Li, W. P. (2011). Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water. Langmuir, 27(20), 12275-12279. https://doi.org/10.1021/la202613r

[23]

Wang, M., Tan, X., Tu, Y., Xiang, P., Jiang, L., Yang, A., Xu, R., & Chen, X. (2020). Self- healing PDMS/SiO2-CaCO3 composite coating for highly efficient protection of building materials. Materials Letters, 265, Article 127290. https://doi.org/10.1016/j.matlet.2019.127290

[24]

Wang, Y., Xiao, W., Ma, K., Dai, C., Wang, D., & Wang, J. (2023b). Enhancing corrosion resistance of the CaCO3/MgO coating via ultrasound-assisted chemical conversion with addition of ethylenediamine tetra-acetic acid (EDTA) on AZ41 Mg alloy. Surface and Coatings Technology, 467, Article 129687. https://doi.org/10.1016/j.surfcoat.2023.129687

[25]

Wang, Y., Xiao, W., Ma, K., Dai, C., Wang, D., & Wang, J. (2023c). In-situ growth and anticorrosion mechanism of a bilayer CaCO3 / MgO coating via rapid electrochemical deposition on AZ41 Mg alloy concrete formwork. Journal of Materials Research and Technology, 25, 6628-6643. https://doi.org/10.1016/j.jmrt.2023.07.110

[26]

Wang, Y., Xiao, W., Ma, K., Dai, C., Wang, D., Wang, J., & Pan, F. (2023d). Towards development of anticorrosive CaCO3 -coated passive layer on Mg alloy with ultrasound-assisted electrodeposition. Corrosion Science, 224, Article 111546. https://doi.org/10.1016/j.corsci.2023.111546

[27]

Wang, Y., You, Z., Ma, K., Dai, C., Wang, D., & Wang, J. (2023e). Corrosion resistance of a superhydrophobic calcium carbonate coating on magnesium alloy by ultrasonic cavitation-assisted chemical conversion. Corrosion Science, 211. https://doi.org/10.1016/j.corsci.2022.110841

[28]

Wang, Y., You, Z., Sanlve, P., Ma, K., Dai, C., Wang, D.,... Pan, F. (2023f). Corrosion resistance of a calcium carbonate coating prepared by ultrasound-assisted chemical conversion in calcium disodium edetate solution. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2022.11.022

[29]

Wang, Y., Yu, D., Ma, K., Dai, C., Wang, D., & Wang, J. (2023g). Self-healing performance and corrosion resistance of a bilayer calcium carbonate coating on microarc-oxidized magnesium alloy. Corrosion Science, 212, Article 110927. https://doi.org/10.1016/j.corsci.2022.110927

[30]

Wu, F., Gao, S., Zeng, Y., Li, Y., Zhao, Z., & Shen, C. (2021). Study on synthesis and demolding performance of polyethylene glycol fatty acid mold release agents. Polymers for Advanced Technologies, 32(10), 4061-4069. https://doi.org/10.1002/pat.5412

[31]

Wu, H., Shi, J., Xiao, Y., He, J., & Chu, J. (2023). Microbial mineralization: A promising approach for stone cultural relics restoration. BiogeotechnicsArticle 100053. https://doi.org/10.1016/j.bgtech.2023.100053

[32]

Wu, W., Zhang, F., Li, Y. C., Zhou, Y. F., Yao, Q. S., Song, L.,... Chen, D. C. (2019b). Corrosion resistance of a silane/ceria modified Mg-Al-layered double hydroxide on AA5005 aluminum alloy. Frontiers of Materials Science, 13(4), 420-430. https://doi.org/10.1007/s11706-019-0476-x

[33]

Wu, W. S., Queiroz, M. E., & Mohallem, N. D. S. (2016). The effect of precipitated calcium carbonate nanoparticles in coatings. Journal of Coatings Technology and Research, 13, 277-286.

[34]

Wu, H., Shi, Z., Zhang, X., Qasim, A. M., Xiao, S., Zhang, F.,... Chu, P. K. (2019a). Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Applied Surface Science, 478(September 2018), 150-161. https://doi.org/10.1016/j.apsusc.2019.01.181

[35]

Yeganeh, M., & Mohammadi, N. (2018). Superhydrophobic surface of Mg alloys: A review. Journal of Magnesium and Alloys, 6(1), 59-70. https://doi.org/10.1016/j.jma.2018.02.001

[36]

Yu, H. J., Wang, L., Shi, Q., Jiang, G. H., Zhao, Z. R., & Dong, X. C. (2006). Study on nano- CaCO3 modified epoxy powder coatings. Progress in Organic Coatings, 55(3), 296-300. https://doi.org/10.1016/j.porgcoat.2006.01.007

[37]

Zaliman, S. Q., Zakaria, N. A., Ahmad, A. L., & Leo, C. P. (2022). 3D-imprinted superhydrophobic polyvinylidene fluoride membrane contactor incorporated with CaCO3 nanoparticles for carbon capture. Separation and Purification Technology, 287. https://doi.org/10.1016/j.seppur.2022.120519

AI Summary AI Mindmap
PDF (11283KB)

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/