Effects of sorbitol and sucrose on soybean-urease induced calcium carbonate precipitate

Mingdong Li , Yuanjiang Yang , Shiai Zhang , Xuedong Chen , Hanshuo Yin , Liping Zhu

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (4) : 100052

PDF (5736KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (4) :100052 DOI: 10.1016/j.bgtech.2023.100052
Research article
research-article

Effects of sorbitol and sucrose on soybean-urease induced calcium carbonate precipitate

Author information +
History +
PDF (5736KB)

Abstract

This study explores the effects of two nucleating agents, sucrose and sorbitol, on soybean-urease induced calcium carbonate precipitation (SICP) at a crystal level. Comparative studies on the mineral composition, crystal size, surface morphologies and thermal stability of SICP samples with/without nucleating agent were investigated with high resolution XRD, SEM and synchronous thermal analyzer (STA), respectively. The results show the introductions of sorbitol or sucrose to SICP reduce the content of vaterite(114) from 10.07% to 1.81%-3.93%, indicating their effect on transforming vaterite into stabler calcite. Sorbitol can enlarge the crystals and improve the thermostability of SICP, indicating an improvement of the crystallinity of SICP. The sucrose-regulated SICP shows medium thermostability which is worse than SICP without the nucleating agent, indicating the addition of sucrose reduces the crystallinity of SICP. Sorbitol is an effective nucleating agent that can improve the behaviors all-around, while sucrose increases the calcite content of SICP but inhibits the crystallinity of SICP. This study reveals the regulations of SICP because of the introduction of sorbitol or sucrose, and provides guidance to the subsequent engineering application of SICP.

Keywords

EICP / Calcium carbonate / Urease / Sorbitol / Sucrose

Cite this article

Download citation ▾
Mingdong Li, Yuanjiang Yang, Shiai Zhang, Xuedong Chen, Hanshuo Yin, Liping Zhu. Effects of sorbitol and sucrose on soybean-urease induced calcium carbonate precipitate. Biogeotechnics, 2023, 1(4): 100052 DOI:10.1016/j.bgtech.2023.100052

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This research was funded by the National Natural Science Foundation of China under Grant number 51869001 and 52168043, Open fund of State Key Laboratory of Nuclear Resources and Environment under Grant No. 2022NRE29, as well as Shuangqian Innovative Talents of Jiangxi (Mingdong Li) and Youth Jinggang Scholar (Mingdong Li).

Declaration of Competing Interest

The authors declare no conflict of interest. Mingdong Li is the editorial board member for Biogeotechnics and was not involved in the editorial review or the decision to publish this article.

References

[1]

Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W., & Al-Salloum, Y. (2020a). Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands. Journal of Cleaner Production, 274, Article 122627.

[2]

Almajed, A., Khodadadi Tirkolaei, H., & Kavazanjian, E.,Jr (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), Article 04018081.

[3]

Almajed, A., Lemboye, K., Arab, M. G., & Alnuaim, A. (2020b). Mitigating wind erosion of sand using biopolymer-assisted EICP technique. Soils and Foundations, 60(2), 356-371.

[4]

Arab, M. G., Rohy, H., Zeiada, W., Almajed, A., & Omar, M. (2021). One-phase EICP biotreatment of sand exposed to various environmental conditions. Journal of Materials in Civil Engineering, 33(3), Article 04020489.

[5]

Blakeley, R. L., & Zerner, B. (1984). Jack bean urease: the first nickel enzyme. Journal of Molecular Catalysis, 23(2-3), 263-292.

[6]

Bushuev, Y. G., Finney, A. R., & Rodger, P. M. (2015). Stability and structure of hydrated amorphous calcium carbonate. Crystal Growth & Design, 15(11), 5269-5279.

[7]

Chandra, A., & Ravi, K. (2020). Effect of magnesium incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to improve shear strength of soil. Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019, vol. 2, Singapore: Springer Singapore,333-346 (March).

[8]

Chen, J., & Xiang, L. (2009). Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 189(1), 64-69.

[9]

Chen, M., Li, Y., Jiang, X., Zhao, D., Liu, X., Zhou, J., & Pan, X. (2021). Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. Journal of Hazardous Materials, 411, Article 125103.

[10]

Choi, S. G., Wang, K., Wen, Z., & Chu, J. (2017). Mortar crack repair using microbial induced calcite precipitation method. Cement and Concrete Composites, 83, 209-221.

[11]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2021). One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 16, 481-489.

[12]

Davis, K. J., Dove, P. M., & De Yoreo, J. J. (2000). The role of Mg2+ as an impurity in calcite growth. Science, 290(5494), 1134-1137.

[13]

Dong, J., & Liu, X. (2022). Application of improved enzyme induced calcium carbonate precipitation (EICP) technology in surface protection of earthen sites. Journal of Cultural Heritage, 54, 146-154.

[14]

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review. BiogeotechnicsArticle 100002.

[15]

Gao, Y., He, J., Tang, X., & Chu, J. (2019). Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils and Foundations, 59(5), 1631-1637.

[16]

Gao, Y., Hua, C., & Ke, T. (2022). Field test on soybean-urease induced calcite precipitation (SICP) for desert sand stabilization against the wind-induced erosion. Sustainability, 14(22), 15474.

[17]

Hamed Khodadadi, T., Kavazanjian, E., van Paassen, L., & DeJong, J. (2017). Bio-grout materials: a review. Grouting, 2017, 1-12.

[18]

He, J., Chen, X., Zhang, Q., & Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration & Biodegradation, 140, 67-HJ71.

[19]

He, J., Gao, Y., Gu, Z., Chu, J., & Wang, L. (2020). Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand. Journal of Materials in Civil Engineering, 32(5), Article 04020071.

[20]

Hoang, T., Alleman, J., Cetin, B., & Choi, S. G. (2020). Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. Journal of Materials in Civil Engineering, 32(4), Article 04020030.

[21]

Hoang, T., Alleman, J., Cetin, B., Ikuma, K., & Choi, S. G. (2019). Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP). Canadian Geotechnical Journal, 56(6), 808-822.

[22]

Jafarnia, M. S., Saryazdi, M. K., & Moshtaghioun, S. M. (2020). Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Construction and Building Materials, 242, Article 118059.

[23]

Jain, S., & Arnepalli, D. N. (2019). Biochemically induced carbonate precipitation in aerobic and anaerobic environments by Sporosarcina pasteurii. Geomicrobiology Journal, 36(5), 443-451.

[24]

Javadi, N., Khodadadi, H., Hamdan, N., & Kavazanjian, E., Jr (2018). EICP treatment of soil by using urease enzyme extracted from watermelon seeds. In IFCEE 2018, 115-124.

[25]

Jiang, X., Rutherford, C., Cetin, B., & Ikuma, K. (2020). Reduction of water erosion using bacterial enzyme induced calcite precipitation (BEICP) for sandy soil. Geo-Congress 2020. Reston, VA: American Society of Civil Engineers104-110.

[26]

Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737-744.

[27]

Kantzas, A., Stehmeier, L., Marentette, D.F., Ferris, F.G., Jha, K.N., & Maurits, F.M. (1992, June). A novel method of sand consolidation through bacteriogenic mineral plugging. In PETSOC Annual Technical Meeting (pp. PETSOC-92). PETSOC.

[28]

Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H., et al. (2019). Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of solids, 134, 21-28.

[29]

Khodadadi, T. H., Kavazanjian, E., & Bilsel, H. (2017). Mineralogy of calcium carbonate in MICP-treated soil using soaking and injection treatment methods. Geotechnical Frontiers 2017, 195-201.

[30]

Lee, S., & Kim, J. (2020). An experimental study on enzymatic-induced carbonate precipitation using yellow soybeans for soil stabilization. KSCE Journal of Civil Engineering, 24(7), 2026-2037.

[31]

Li, L., Yang, Y., Lv, Y., Yin, P., & Lei, T. (2020). Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier. Colloids and Surfaces B Biointerfaces, 186, Article 110720.

[32]

Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A., & Amini, F. (2016). Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering, 28(4), Article 04015166.

[33]

Li, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiology Journal, 35(1), 15-22.

[34]

Li, X. G., Lv, Y., Ma, B. G., Wang, W. Q., & Jian, S. W. (2017). Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA. Arabian Journal of Chemistry, 10, S2534-S2538.

[35]

Li, Y., Mi, T., Liu, W., Dong, Z., Dong, B., Tang, L., & Xing, F. (2021). Chemical and mineralogical characteristics of carbonated and uncarbonated cement pastes subjected to high temperatures. Composites Part B Engineering, 216, Article 108861.

[36]

Lin, H., Suleiman, M. T., & Brown, D. G. (2020). Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP). Soils and Foundations, 60(4), 944-961.

[37]

Lin-yu, W. U., Lin-chang, M. I. A. O., Xiao-hao, S. U. N., Run-fa, C. H. E. N., & Cheng-cheng, W. A. N. G. (2020). Experimental study on sand solidification using plant- derived urease-induced calcium carbonate precipitation. Chinese Journal of Geotechnical Engineering, 42(4), 714-720.

[38]

Liu, H., Chu, J., & Edward, K. (2023). Biogeotechnics: a new frontier in geotechnical engineering for sustainability. Biogeotechnics.

[39]

Moghal, A. A. B., Lateef, M. A., Mohammed, S. A. S., Lemboye, K., CS Chittoori, B., & Almajed, A. (2020). Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustainability, 12(17), 7019.

[40]

Morandeau, A., Thiery, M., & Dangla, P. (2014). Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research, 56, 153-170.

[41]

Mujah, D., Cheng, L., & Shahin, M. A. (2019). Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31(4), Article 04019025.

[42]

Naeimi, M., & Chu, J. (2017). Comparison of conventional and bio-treated methods as dust suppressants. Environmental Science and Pollution Research, 24, 23341-23350.

[43]

Nafisi, A., Safavizadeh, S., & Montoya, B. M. (2019). Influence of microbe and enzyme- induced treatments on cemented sand shear response. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), Article 06019008.

[44]

Nam, I. H., Chon, C. M., Jung, K. Y., Choi, S. G., Choi, H., & Park, S. S. (2015). Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials. KSCE Journal of Civil Engineering, 19, 1620-1625.

[45]

Pan, X., Chu, J., Yang, Y., & Cheng, L. (2020). A new biogrouting method for fine to coarse sand. Acta Geotechnica, 15, 1-16.

[46]

Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8), 66.

[47]

Qian, C., Ren, X., Rui, Y., & Wang, K. (2021). Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species. Biochemical Engineering Journal, 176, Article 108180.

[48]

Refaei, M., Arab, M. G., & Omar, M. (2020). Sandy soil improvement through biopolymer assisted EICP. Geo-Congress 2020. Reston, VA: American Society of Civil Engineers612- 619 (February).

[49]

Wei, Y., Xu, H., Xu, S., Su, H., Sun, R., Huang, D., & Lian, X. (2020). Synthesis and characterization of calcium carbonate on three kinds of microbial cells templates. Journal of Crystal Growth, 547, Article 125755.

[50]

Wen, K., Li, Y., Amini, F., & Li, L. (2020). Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotechnica, 15, 17-27.

[51]

Yang, Y., Li, M., Tao, X., Zhang, S., He, J., Zhu, L., & Wen, K. (2022). The effect of nucleating agents on enzyme-induced carbonate precipitation and corresponding microscopic Mechanisms. Materials, 15(17), 5814.

[52]

Yin, L., Tang, C., Xie, Y., Lv, C., & Shi, B. (2019). Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation. Rock and Soil Mechanics, 40(07), 2525-2546.

[53]

Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), Article 04014094.

[54]

Zhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24, 372-380.

[55]

Zheng, T., Su, Y., Qian, C., & Zhou, H. (2020). Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochemical Engineering Journal, 163, Article 107756.

[56]

Zhou, L., Lai, C., Wang, F., & He, P. (2018). Research progress on the preparation and application of porous calcium carbonate. Chemical Industry and Engineering Progress, 37(01), 159-167.

[57]

Zhu, L., Lang, C., Li, B., Wen, K., & Li, M. (2022). Characteristics of soybean urease induced CaCO3 precipitation. Geomechanics and Engineering, 31(3), 281.

[58]

Zhuravlev, Y. N., & Atuchin, V. V. (2020). Comprehensive density functional theory studies of vibrational spectra of carbonates. Nanomaterials, 10(11), 2275.

[59]

Zusfahair, Z., Ningsih, D. R., Putri, D., & Fatoni, A. (2018). Partial purification and characterization of urease from black-eyed pea (Vigna unguiculata ssp unguiculata L.). Malaysian Journal of Fundamental and Applied Sciences, 14(1), 20-24.

AI Summary AI Mindmap
PDF (5736KB)

49

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/