Influence of biochar on soil air permeability and greenhouse gas emissions in vegetated soil: A review

Yuchen Wang , Jiayu Gu , Junjun Ni

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (4) : 100040

PDF (4275KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (4) :100040 DOI: 10.1016/j.bgtech.2023.100040
Review article
research-article

Influence of biochar on soil air permeability and greenhouse gas emissions in vegetated soil: A review

Author information +
History +
PDF (4275KB)

Abstract

The increasing emission of greenhouse gases such as CO2, CH4, and N2O from the soil has become a growing concern globally. To address this issue, biochar has emerged as an environmentally friendly soil amendment that can affect the gas permeability of soil and reduce greenhouse gas emissions. The biochar-soil-plant system exhibits a complicated interaction that promotes plant productivity and root elongation, further impacting greenhouse gas emissions. The objective of this paper is to provide a comprehensive review of the effects of biochar on soil gas permeability and consequently greenhouse gas emission in vegetated soil. The paper begins by discussing the basic characteristics of biochar and its impact on soil microstructure. It then explores the impact of biochar on the gas permeability of both non-vegetated and vegetated soil. The mechanisms through which biochar influences greenhouse gas emission are explained in terms of modified soil aeration, water holding capacity, adsorption, pH, available nutrients, and the activity of soil microbes and enzymes. The role of plants in greenhouse gas emission in biochar-amended soil is also analysed by comparing the vegetated group with the non-vegetation group. The paper includes a discussion of the various methods used to measure soil gas permeability, such as the steady-state and transient methods, as well as greenhouse gas emission measurement techniques, such as the chamber system and micrometeorological methods. Finally, future research directions are proposed to highlight the impact and corresponding mechanisms of plant roots on the biochar-induced variation of soil gas permeability and greenhouse gas emission.

Keywords

Emission / Greenhouse gas / Permeability / Plant / Soil amendment

Cite this article

Download citation ▾
Yuchen Wang, Jiayu Gu, Junjun Ni. Influence of biochar on soil air permeability and greenhouse gas emissions in vegetated soil: A review. Biogeotechnics, 2023, 1(4): 100040 DOI:10.1016/j.bgtech.2023.100040

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yuchen Wang: Investigation, Resources, Writing - original draft, Visualization. Jiayu Gu: Investigation, Writing - original draft. Junjun Ni: Conceptualization, Methodology, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge the Fundamental Research Funds for the Central Universities (4021002305) and the funding from the State Key Laboratory of Subtropical Building Science in South China University of Technology (2022ZC01).

References

[1]

Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.

[2]

Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295-306.

[3]

Agegnehu, G., Bass, A. M., Nelson, P. N., Muirhead, B., Wright, G., & Bird, M. I. (2015). Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems & Environment, 213, 72-85.

[4]

Ajayi, A. E., & Rainer, H. O. R. N. (2017). Biochar-induced changes in soil resilience: effects of soil texture and biochar dosage. Pedosphere, 27(2), 236-247.

[5]

Amoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307, 189-197.

[6]

Angst, T. E., Six, J., Reay, D. S., & Sohi, S. P. (2014). Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agriculture, Ecosystems & Environment, 191, 17-26.

[7]

ASTM D6539-00 (2006) Standard Test Method for Measurement of Pneumatic Permeability of Partially Saturated Porous Materials by Flowing Air.

[8]

Baah-Acheamfour, M., Carlyle, C. N., Lim, S. S., Bork, E. W., & Chang, S. X. (2016). Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Science of the total Environment, 571, 1115-1127.

[9]

Ball, B. C. (2013). Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. European Journal of Soil Science, 64(3), 357-373.

[10]

Ball, B. C., Harris, W., & Burford, J. R. (1981). A laboratory method to measure gas diffusion and flow in soil and other porous materials. Journal of Soil Science, 32(3), 323-334.

[11]

Barthel, M., Bauters, M., Baumgartner, S., Drake, T. W., Bey, N. M., Bush, G., Boeckx, P., Botefa, C. I., Dériaz, N., Ekamba, G. L., & Gallarotti, N. (2022). Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 13(1), 330.

[12]

Basalirwa, D., Sudo, S., Wacal, C., Oo, A. Z., Sasagawa, D., Yamamoto, S., Masunaga, T., & Nishihara, E. (2020). Impact of fresh and aged palm shell biochar on N2O emissions, soil properties, nutrient content and yield of Komatsuna (Brassica rapa var. perviridis) under sandy soil conditions. Soil Science and Plant Nutrition, 66(2), 328-343.

[13]

Bass, A. M., Bird, M. I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 550, 459-470.

[14]

Blagodatsky, S., & Smith, P. (2012). Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry, 47, 78-92.

[15]

Bordoloi, S., Garg, A., Sreedeep, S., Lin, P., & Mei, G. (2018). Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresource Technology, 263, 665-677.

[16]

Bouazza, A., & Vangpaisal, T. (2003). An apparatus to measure gas permeability of geosynthetic clay liners. Geotextiles and Geomembranes, 21(2), 85-101.

[17]

Bragazza, L., Parisod, J., Buttler, A., & Bardgett, R. D. (2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3(3), 273-277.

[18]

Butterbach-Bahl, K., Sander, B. O., Pelster, D., & Díaz-Pinés, E. (2016). Quantifying greenhouse gas emissions from managed and natural soils. Methods for measuring greenhouse gas balances and evaluating mitigation options in smallholder agriculture, 71-96.

[19]

Cai, W., Kumar, H., Huang, S., Bordoloi, S., Garg, A., Lin, P., & Gopal, P. (2020). ANN model development for air permeability in biochar amended unsaturated soil. Geotechnical and Geological Engineering, 38, 1295-1309.

[20]

Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 101(14), 5222-5228.

[21]

Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2014). Can biochar reduce soil greenhouse gas emissions from a M iscanthus bioenergy crop? Gcb Bioenergy, 6(1), 76-89.

[22]

Chapman, N., Miller, A. J., Lindsey, K., & Whalley, W. R. (2012). Roots, water, and nutrient acquisition: let's get physical. Trends in Plant Science, 17(12), 701-710.

[23]

Cha-un, N., Chidthaisong, A., Yagi, K., Sudo, S., & Towprayoon, S. (2017). Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture, Ecosystems & Environment, 237, 109-120.

[24]

Chen, F. Q., Zhao, N. K., Feng, S., Liu, H. W., & Liu, Y. C. (2020a). Effects of biochar content on gas diffusion coefficient of soil with different compactness and air contents. Environmental Science and Pollution Research, 27, 21497-21505.

[25]

Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69.

[26]

Chen, G., Ren, L., Wang, J., Liu, F., Liu, G., Li, H., Zhang, P., & Jia, Z. (2022). Optimizing fertilization depth can promote sustainable development of dryland agriculture in the Loess Plateau region of China by improving crop production and reducing gas emissions. Plant and Soil, 1-17.

[27]

Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1, 75-87.

[28]

Chen, Z., Chen, C., Kamchoom, V., & Chen, R. (2020b). Gas permeability and water retention of a repacked silty sand amended with different particle sizes of peanut shell biochar. Soil Science Society of America Journal, 84(5), 1630-1641.

[29]

Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477-1488.

[30]

Deepagoda, T. C., Moldrup, P., Schjønning, P., Jonge, L. W. D., Kawamoto, K., & Komatsu, T. (2011). Density-corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone Journal, 10(1), 226-238.

[31]

Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190(1-3), 909-915.

[32]

Fuentes-Ponce, M. H., Gutiérrez-Díaz, J., Flores-Macías, A., González-Ortega, E., Mendoza, A. P., Sánchez, L. M. R., Novotny, I., & Espíndola, I. P. M. (2022). Direct and indirect greenhouse gas emissions under conventional, organic, and conservation agriculture. Agriculture, Ecosystems & Environment, 340, 108148.

[33]

Garg, A., Bordoloi, S., Ni, J., Cai, W., Maddibiona, P. G., Mei, G., Poulsen, T. G., & Lin, P. (2019). Influence of biochar addition on gas permeability in unsaturated soil. Géotechnique Letters, 9(1), 66-71.

[34]

Garg, A., Huang, H., Kushvaha, V., Madhushri, P., Kamchoom, V., Wani, I., Koshy, N., & Zhu, H. H. (2020). Mechanism of biochar soil pore-gas-water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophysica, 68, 207-217.

[35]

Garg, A., Huang, H., Cai, W., Reddy, N. G., Chen, P., Han, Y., Kamchoom, V., Gaurav, S., & Zhu, H. H. (2021). Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 593-602.

[36]

Ghestem, M., Sidle, R. C., & Stokes, A. (2011). The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience, 61(11), 869-879.

[37]

Ginebra, M., Muñoz, C., Calvelo-Pereira, R., Doussoulin, M., & Zagal, E. (2022). Biochar impacts on soil chemical properties, greenhouse gas emissions and forage productivity: A field experiment. Science of the Total Environment, 806, 150465.

[38]

Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., Gao, X., Hanis, K., Tenuta, M., Campbell, C. A., McConkey, B. G., Nemecek, T., & Burgess, P. J. (2018). A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 172, 4010-4017.

[39]

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.

[40]

Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209, 188-197.

[41]

Horel, Á., Tóth, E., Gelybó G., Dencső M., & Farkas, C. (2019). Biochar amendment affects soil water and CO2 regime during Capsicum annuum plant growth. Agronomy, 9(2), 58.

[42]

Hou, R., Li, T., Fu, Q., Liu, D., Li, M., Zhou, Z., Li, Q., Zhao, H., Yu, P., & Yan, J. (2020). Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena, 194, 104735.

[43]

Hu, Y., Thomsen, T. P., Fenton, O., Sommer, S. G., Shi, W., & Cui, W. (2023). Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. Environmental Research, 216, Article 114543.

[44]

Huang, H., Wang, Y. X., Tang, J. C., & Zhu, W. Y. (2014). Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene. Huan Jing ke Xue, 35(5), 1884-1890.

[45]

Huang, H., Cai, W. L., Zheng, Q., Chen, P. N., Huang, C. R., Zeng, Q. J., Kumar, H., Zhu, H. H., Garg, A., Zheenbek, K., & Kushvaha, V. (2020). March. Gas permeability in soil amended with biochar at different compaction states. IOP Conference Series: Earth and Environmental Science (Vol. 463, No. 1, 012073). IOP Publishing,.

[46]

Hussain, R., & Ravi, K. (2022). Investigating soil properties and vegetation parameters in different biochar-amended vegetated soil at large suction for application in bioengineered structures. Scientific Reports, 12(1), 21261.

[47]

I) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249-256.

[48]

Jien, S. H. (2019). Physical characteristics of biochars and their effects on soil physical properties. Biochar from Biomass and Waste, 21-35.

[49]

Joseph, J., Kuntikana, G., & Singh, D. N. (2019). Investigations on gas permeability in porous media. Journal of Natural Gas Science and Engineering, 64, 81-92.

[50]

Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., & Lehmann, J. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501-515.

[51]

Jotisankasa, A., & Sirirattanachat, T. (2017). Effects of grass roots on soil-water retention curve and permeability function. Canadian Geotechnical Journal, 54(11), 1612-1622.

[52]

Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140( 1-2), 309-313.

[53]

Khan, M. N., Huang, J., Li, D., Daba, N. A., Han, T., Du, J., Qaswar, M., Anthonio, C. K., Sial, T. A., Haseeb, A., & Zhang, L. (2022). Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environmental Research, 203, Article 111879.

[54]

Kirkham, D. (1947). Field method for determination of air permeability of soil in its undisturbed state. Soil Science Society of America Journal, 11, 93-99.

[55]

Krishna, B., & Sarvesh, J. (2014). Impact of biochar amount on water evaporating capacity of biochar blended soil. International Journal of Basic and Applied Biology, 2(3), 120-123.

[56]

Kumar, H., Cai, W., Lai, J., Chen, P., Ganesan, S. P., Bordoloi, S., Liu, X., Wen, Y., Garg, A., & Mei, G. (2020). Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars. Journal of Soils and Sediments, 20, 1983-1996.

[57]

Lam, S. K., Suter, H., Davies, R., Bai, M., Mosier, A. R., Sun, J., & Chen, D. (2018). Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor. Soil Biology and Biochemistry, 116, 48-51.

[58]

Lehmann, J. (2007). Bio-energy in the black. frontiers in Ecology and the Environment, 5(7), 381-387.

[59]

Lehmann, J., Lan, Z., Hyland, C., Sato, S., Solomon, D., & Ketterings, Q. M. (2005). Long- term dynamics of phosphorus forms and retention in manure-amended soils. Environmental Science & Technology, 39(17), 6672-6680.

[60]

Leung, A. K., Garg, A., & Ng, C. W. W. (2015). Effects of plant roots on soil-water retention and induced suction in vegetated soil. Engineering Geology, 193, 183-197.

[61]

Li, F., Cao, X., Zhao, L., Yang, F., Wang, J., & Wang, S. (2013). Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China. Soil Science and Plant Nutrition, 59(5), 800-811.

[62]

Li, H., Jiao, J. J., & Luk, M. (2004). A falling-pressure method for measuring air permeability of asphalt in laboratory. Journal of Hydrology, 286(1-4), 69-77.

[63]

Li, M. Y., Sun, W. J., Wang, Y. J., Sun, D. A., & Tan, Y. Z. (2021). Air permeability of biochar-amended clay cover. Arabian Journal of Geosciences, 14, 1-12.

[64]

Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., Lin, Z., & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18, 546-563.

[65]

Lin, X. W., Xie, Z. B., Zheng, J. Y., Liu, Q., Bei, Q. C., & Zhu, J. G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. European Journal of Soil Science, 66(2), 329-338.

[66]

Liu, Z., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. Journal of Hydrology, 533, 461-472.

[67]

Lognoul, M., Theodorakopoulos, N., Hiel, M. P., Regaert, D., Broux, F., Heinesch, B., Bodson, B., Vandenbol, M., & Aubinet, M. (2017). Impact of tillage on greenhouse gas emissions by an agricultural crop and dynamics of N2O fluxes: Insights from automated closed chamber measurements. Soil and Tillage Research, 167, 80-89.

[68]

Lu, X., Li, Y., Wang, H., Singh, B. P., Hu, S., Luo, Y., Li, J., Xiao, Y., Cai, X., & Li, Y. (2019). Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agricultural and Forest Meteorology, 271, 168-179.

[69]

Lu, Y., Gu, K., Zhang, Y., Tang, C., Shen, Z., & Shi, B. (2021). Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms. Science of The Total Environment, 794, Article 148608.

[70]

Lu, Y., Gu, K., Shen, Z., Wang, X., Zhang, Y., Tang, C. S., & Shi, B. (2022). Effects of biochar particle size and dosage on the desiccation cracking behavior of a silty clay. Science of The Total Environment, 837, Article 155788.

[71]

Ma, Z., Shrestha, B. M., Bork, E. W., Chang, S. X., Carlyle, C. N., Döbert, T. F., Sobrinho, L. S., & Boyce, M. S. (2021). Soil greenhouse gas emissions and grazing management in northern temperate grasslands. Science of The Total Environment, 796, 148975.

[72]

Markgraf, W., Watts, C. W., Whalley, W. R., Hrkac, T., & Horn, R. (2012). Influence of organic matter on rheological properties of soil. Applied Clay Science, 64, 25-33.

[73]

Massmann, J., & Johnson, L. (2001). Exercises illustrating flow in porous media. Groundwater, 39(4), 499-503.

[74]

Massmann, J. W., & Madden, M. (1994). Estimating air conductivity and porosity from vadose-zone pumping tests. Journal of Environmental Engineering, 120(2), 313-328.

[75]

Maucieri, C., Zhang, Y., McDaniel, M. D., Borin, M., & Adams, M. A. (2017). Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma, 307, 267-276.

[76]

Moldrup, P., Yoshikawa, S., Olesen, T., Komatsu, T., & Rolston, D. E. (2003). Gas diffusivity in undisturbed volcanic ash soils: Test of soil-water-characteristic-based prediction models. Soil Science Society of America Journal, 67(1), 41-51.

[77]

Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487, 26-36.

[78]

Muñoz, C., Ginebra, M., & Zagal, E. (2019). Variation of greenhouse gases fluxes and soil properties with addition of biochar from farm-wastes in volcanic and non-volcanic soils. Sustainability, 11(7), 1831.

[79]

Nayak, D., Saetnan, E., Cheng, K., Wang, W., Koslowski, F., Cheng, Y. F., Zhu, W. Y., Wang, J. K., Liu, J. X., Moran, D., & Yan, X. (2015). Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems & Environment, 209, 108-124.

[80]

Ng, C. W. W., Wang, Y. C., Ni, J. J., & So, P. S. (2022). Effects of phosphorus-modified biochar as a soil amendment on the growth and quality of Pseudostellaria heterophylla. Scientific Reports, 12(1), 7268.

[81]

Ni, J., Leung, A. K., & Ng, C. W. (2019). Unsaturated hydraulic properties of vegetated soil under single and mixed planting conditions. Géotechnique, 69(6), 554-559.

[82]

Ni, J. J., & Ng, C. W. W. (2019). Long-term effects of grass roots on gas permeability in unsaturated simulated landfill covers. Science of the Total Environment, 666, 680-684.

[83]

Ni, J. J., Chen, X. W., Ng, C. W. W., & Guo, H. W. (2018). Effects of biochar on water retention and matric suction of vegetated soil. Géotechnique Letters, 8(2), 124-129.

[84]

Ni, J. J., Bordoloi, S., Shao, W., Garg, A., Xu, G., & Sarmah, A. K. (2020). Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Science of the Total Environment, 712, Article 136486.

[85]

O’Connell, C. S., Ruan, L., & Silver, W. L. (2018). Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature communications, 9(1), 1348.

[86]

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327-352.

[87]

Oestmann, J., Dettmann, U., Duevel, D., & Tiemeyer, B. (2022). Experimental warming increased greenhouse gas emissions of a near-natural peatland and Sphagnum farming sites. Plant and Soil, 1-20.

[88]

Oleszczuk, P., Hale, S. E., Lehmann, J., & Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technology, 111, 84-91.

[89]

Paneque, M., De la Rosa, J. M., Franco-Navarro, J. D., Colmenero-Flores, J. M., & Knicker, H. (2016). Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 147, 280-287.

[90]

Peng, X. Y. L. L., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112(2), 159-166.

[91]

Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40(24), 7757-7763.

[92]

Pires, L. F., Cooper, M., Cássaro, F. A. M., Reichardt, K., Bacchi, O. O. S., & Dias, N. M. P. (2008). Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena, 72(2), 297-304.

[93]

Poulsen, T. G., & Moldrup, P. (2007). Air permeability of compost as related to bulk density and volumetric air content. Waste Management & Research, 25(4), 343-351.

[94]

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., & Janssens, I. (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123(3-4), 159-176.

[95]

Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271-284.

[96]

Resurreccion, A. C., Komatsu, T., Kawamoto, K., Oda, M., Yoshikawa, S., & Moldrup, P. (2008). Linear model to predict soil-gas diffusivity from two soil-water retention points in unsaturated volcanic ash soils. Soils and Foundations, 48(3), 397-406.

[97]

Romero, C. M., Chunli, L. I., Owens, J., Ribeiro, G. O., Mcallister, T. A., Okine, E., & Xiying, H. A. O. (2021). Nutrient cycling and greenhouse gas emissions from soil amended with biochar-manure mixtures. Pedosphere, 31(2), 289-302.

[98]

Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications. Academic press,.

[99]

Sackett, T. E., Basiliko, N., Noyce, G. L., Winsborough, C., Schurman, J., Ikeda, C., & Thomas, S. C. (2015). Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. Gcb Bioenergy, 7(5), 1062-1074.

[100]

Sadasivam, B. Y., & Reddy, K. R. (2015). Engineering properties of waste wood-derived biochars and biochar-amended soils. International Journal of Geotechnical Engineering, 9(5), 521-535.

[101]

Sainju, U. M., Stevens, W. B., Caesar-TonThat, T., & Liebig, M. A. (2012). Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. Journal of Environmental Quality, 41(6), 1774-1786.

[102]

Sánchez-Navarro, V., Martínez-Martínez, S., Acosta, J. A., Almagro, M., Martínez-Mena, M., Boix-Fayos, C., Díaz-Pereira, E., Temnani, A., Berrios, P., Pérez-Pastor, A., & Zornoza, R. (2023). Soil greenhouse gas emissions and crop production with implementation of alley cropping in a Mediterranean citrus orchard. European Journal of Agronomy, 142, Article 126684.

[103]

Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., & Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment, 191, 39-52.

[104]

Senbayram, M., Saygan, E. P., Chen, R., Aydemir, S., Kaya, C., Wu, D., & Bladogatskaya, E. (2019). Effect of biochar origin and soil type on the greenhouse gas emission and the bacterial community structure in N fertilised acidic sandy and alkaline clay soil. Science of the Total Environment, 660, 69-79.

[105]

Shan, C., Falta, R. W., & Javandel, I. (1992). Analytical solutions for steady state gas flow to a soil vapor extraction well. Water Resources Research, 28(4), 1105-1120.

[106]

Shumba, A., Chikowo, R., Corbeels, M., Six, J., Thierfelder, C., & Cardinael, R. (2023). Long-term tillage, residue management and crop rotation impacts on N2O and CH4 emissions from two contrasting soils in sub-humid Zimbabwe. Agriculture, Ecosystems & Environment, 341, Article 108207.

[107]

Sial, T. A., Khan, M. N., Lan, Z., Kumbhar, F., Ying, Z., Zhang, J., Sun, D., & Li, X. (2019a). Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Safety and Environmental Protection, 122, 366-377.

[108]

Sial, T. A., Lan, Z., Khan, M. N., Zhao, Y., Kumbhar, F., Liu, J., Zhang, A., Hill, R. L., Lahori, A. H., & Memon, M. (2019b). Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Management, 87, 125-134.

[109]

Smith, J. A., Katchmark, W., Choi, J. W., & Tillman, F. D.,Jr (1999). March. Unsaturated zone air flow at Picatinny Arsenal, New Jersey: Implications for natural remediation of the trichloroethylene-contaminated aquifer. US Geological Survery Toxic Substances Hydrology Program-Proceedings of the Technical Meeting, 625-634.

[110]

Smith, J. E., Robin, M. J., & Elrick, D. E. (1997). A source of systematic error in transient‐flow air permeameter measurements. Soil Science Society of America Journal, 61(6), 1563-1568.

[111]

Sombroek, W. I. M., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., & Lehmann, J. (2003). Amazonian dark earths as carbon stores and sinks. Amazonian Dark Earths: Origin Properties Management, 125-139.

[112]

Song, L., Li, J. H., Zhou, T., & Fredlund, D. G. (2017). Experimental study on unsaturated hydraulic properties of vegetated soil. Ecological Engineering, 103, 207-216.

[113]

Springer, D. S., Loaiciga, H. A., Cullen, S. J., & Everett, L. G. (1998). Air permeability of porous materials under controlled laboratory conditions. GroundWater, 36(4), 558-565.

[114]

Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J. J., & Grignani, C. (2016). Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Journal of Environmental Management, 166, 73-83.

[115]

Sun, Z., Moldrup, P., Elsgaard, L., Arthur, E., Bruun, E. W., Hauggaard-Nielsen, H., & de Jonge, L. W. (2013). Direct and indirect short-term effects of biochar on physical characteristics of an arable sandy loam. Soil Science, 178(9), 465-473.

[116]

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85.

[117]

Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653-659.

[118]

Traoré O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A., & Boeuf-Tremblay V.1122 (2000). Effect of root mucilage and modelled root exudates on soil 1123 structure. European Journal of Soil Science, 51(4), 575-581.

[119]

Troy, S. M., Lawlor, P. G., O'Flynn, C. J., & Healy, M. G. (2013). Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry, 60, 173-181.

[120]

Turner, J. A. (1999). A realizable renewable energy future. Science, 285(5428), 687-689.

[121]

Ubando, A. T., Culaba, A. B., Aviso, K. B., Ng, D. K., & Tan, R. R. (2014). Fuzzy mixed- integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions. Clean Technologies and Environmental Policy, 16, 1537-1549.

[122]

Vaverková M. D., Radziemska, M., Bartoň S., Cerdà A., & Koda, E. (2018). The use of vegetation as a natural strategy for landfill restoration. Land Degradation & Development, 29(10), 3674-3680.

[123]

Vergara, S. E., & Silver, W. L. (2019). Greenhouse gas emissions from windrow composting of organic wastes: Patterns and emissions factors. Environmental Research Letters, 14(12), 124027.

[124]

Viguria, M., Sanz-Cobeña, A., López, D. M., Arriaga, H., & Merino, P. (2015). Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil. Agriculture, Ecosystems & Environment, 199, 261-271.

[125]

Wang, C., Liu, J., Shen, J., Chen, D., Li, Y., Jiang, B., & Wu, J. (2018). Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agriculture, Ecosystems & Environment, 262, 83-96.

[126]

Wang, J., Pan, X., Liu, Y., Zhang, X., & Xiong, Z. (2012). Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil, 360, 287-298.

[127]

Wang, W., Wang, Z., Yang, K., Wang, P., Wang, H., Guo, L., Zhu, S., Zhu, Y., & He, X. (2020). Biochar application alleviated negative plant-soil feedback by modifying soil microbiome. Frontiers in Microbiology, 11, 799.

[128]

Wang, Y., Sun, J., Hou, S., Tan, Y., Wang, Z., Chang, S., Chen, J., Qian, Y., Chu, J., & Hou, F. (2022). Plateau pika burrowing and yak grazing jointly determine ecosystem greenhouse gas emissions of alpine meadow. Land Degradation & Development, 33(18), 3914-3925.

[129]

Wang, Y. C., & Ni, J. J. (2023). Biochar application on heavy metal immobilization in unsaturated soil with vegetation: a review. International Journal of Geotechnical Engineering, 1-11.

[130]

Wong, J. T. F., Chen, Z., Ng, C. W. W., & Wong, M. H. (2016). Gas permeability of biochar- amended clay: potential alternative landfill final cover material. Environmental Science and Pollution Research, 23, 7126-7131.

[131]

Wu, D., Senbayram, M., Zang, H., Ugurlar, F., Aydemir, S., Brüggemann, N., Kuzyakov, Y., Bol, R., & Blagodatskaya, E. (2018). Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology, 129, 121-127.

[132]

Wu, F., Jia, Z., Wang, S., Chang, S. X., & Startsev, A. (2013). Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils, 49, 555-565.

[133]

Xiang, J., Liu, D., Ding, W., Yuan, J., & Lin, Y. (2015). Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season. Journal of Cleaner Production, 104, 52-58.

[134]

Yang, W., Feng, G., Miles, D., Gao, L., Jia, Y., Li, C., & Qu, Z. (2020). Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of the Total Environment, 729, Article 138752.

[135]

Yang, X., Liu, D., Fu, Q., Li, T., Hou, R., Li, Q., Li, M., & Meng, F. (2022). Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: Regulation mechanism of biochar. Environmental Research, 206, Article 112303.

[136]

Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R., Cao, X., Yang, L., Xue, Y., & Li, H. (2012). Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 209, 408-413.

[137]

Zhan, T. L. T., Yang, Y. B., Chen, R., Ng, C. W. W., & Chen, Y. M. (2014). Influence of clod size and water content on gas permeability of a compacted loess. Canadian Geotechnical Journal, 51(12), 1468-1474.

[138]

Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012b). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351, 263-275.

[139]

Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., & Yu, X. (2012a). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153-160.

[140]

Zhang, C., Xu, T., Feng, H., & Chen, S. (2019). Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability, 11(8), 2282.

[141]

Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Zheng, J., Zheng, J., Cheng, K., Joseph, S., & Liu, X. (2016). Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106-113.

[142]

Zhang, X., Xie, H., Liu, X., Kong, D., Zhang, S., & Wang, C. (2021). A novel green substrate made by sludge digestate and its biochar: Plant growth and greenhouse emission. Science of The Total Environment, 797, 149194.

[143]

Zhang, Y., Gu, K., Li, J., Tang, C., Shen, Z., & Shi, B. (2020a). Effect of biochar on desiccation cracking characteristics of clayey soils. Geoderma, 364, Article 114182.

[144]

Zhang, Y., Gu, K., Tang, C., Shen, Z., Narala, G. R., & Shi, B. (2020b). Effects of biochar on the compression and swelling characteristics of clayey soils. International Journal of Geosynthetics and Ground Engineering, 6, 1-8.

[145]

Zheng, Y., Han, X., Li, Y., Yang, J., Li, N., & An, N. (2019). Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast China. Scientific Reports, 9(1), 1-11.

[146]

Zhou, W., Zhang, Y., Zhong, K., Xiong, R., Long, P., Xu, Y., Ma, X., Wu, Q., Wang, H., & Fu, Z. (2022). Ferrate-modified Biochar for Greenhouse Gas Mitigation: first-principles calculation and Paddy Field trails. Agronomy, 12(11), 2661.

AI Summary AI Mindmap
PDF (4275KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/