Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review

Hanjiang Lai , Xingzhi Ding , Mingjuan Cui , Junjie Zheng , Zhibo Chen , Jialong Pei , Jianwei Zhang

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) : 100039

PDF (3767KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) :100039 DOI: 10.1016/j.bgtech.2023.100039
Review article
research-article

Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review

Author information +
History +
PDF (3767KB)

Abstract

Heavy metal contamination of soil and water is one of the most prominent environmental issues worldwide. Through bioaccumulation and biomagnification of the food chain, heavy metals can be enriched hundreds of times and eventually enter the human body, posing a major threat to human health. Biomineralization has the greatest potential to become an efficient and environmentally friendly heavy metal remediation technology and has received much attention in recent decades. This review summarizes the latest progress of biomineralization technology on carbonate precipitation and phosphate precipitation in heavy metal remediation. Both microorganisms (including bacteria and fungi) and enzymes can induce carbonate and phosphate precipitation, converting the free heavy metal ions into insoluble salts. However, the mechanisms of the heavy metal remediation are significantly different. For example, urea hydrolysis, which occurs intracellularly when urease-producing bacteria (UPB) are used, is the most commonly used mechanism for carbonate precipitation based bioremediation. In contrast, phosphate solubilization by either enzymes or organic acids secreted by phosphate solubilizing bacteria (PSB) is extracellular, and both soluble and insoluble phosphorus can be decomposed by PSB. Moreover, some influencing factors such as the different species of microorganism, heavy metals and some environmental conditions that may affect the bioremediation of heavy metals were also summarized in this paper. The challenges of biomineralization based heavy metal remediation are also discussed. Based on the reviews of previous studies, a comprehensive understanding of heavy metal removal through microorganism can be increased, and thus promotes the applications of biomineralization technology in the treatment of large-scale heavy metal contaminated sites.

Keywords

Heavy metal contamination / Bioremediation / Biomineralization / Mechanisms / Influencing factor

Cite this article

Download citation ▾
Hanjiang Lai, Xingzhi Ding, Mingjuan Cui, Junjie Zheng, Zhibo Chen, Jialong Pei, Jianwei Zhang. Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review. Biogeotechnics, 2023, 1(3): 100039 DOI:10.1016/j.bgtech.2023.100039

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Junjie Zheng and Jianwei Zhang are editorial board members, and Mingjuan Cui and Hanjiang Lai are early career editorial board memers for Biogeotechnics, they were not involved in the editorial review or the decision to publish this article.

Acknowledgements

The authors would like to thank the financial support by the National Natural Science Foundation of China (NSFC) (Grant No. 52178319, 52108307, 52078236, 51878313, 51708243), and the Natural Science Foundation of Fujian Province, China (Grant No. 2022J05020, 2022J05127).

References

[1]

Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012a). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201-202, 178-184. https://doi.org/10.1016/j.jhazmat.2011.11.067

[2]

Achal, V., Pan, X., & Zhang, D. (2012b). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89, 764-768. https://doi.org/10.1016/j.chemosphere.2012.06.064

[3]

Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93, 1352-1358. https://doi.org/10.1016/j.chemosphere.2013.08.008

[4]

Adabbo, M., Caputo, D., de Gennaro, B., Pansini, M., & Colella, C. (1999). Ion exchange selectivity of phillipsite for Cs and Sr as a function of framework composition. Microporous and Mesoporous Materials, 28, 315-324. https://doi.org/10.1016/S1387-1811(98)00246-7

[5]

Ahmadpour, A., Zabihi, M., Tahmasbi, M., & Rohani Bastami, T. (2010). Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. Journal of Hazardous Materials, 182, 552-556. https://doi.org/10.1016/j.jhazmat.2010.06.067

[6]

Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. G´eotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022

[7]

Anetor, J. I. (2012). Rising environmental cadmium levels in developing countries: threat to genome stability and health. Journal of Environmental & Analytical Toxicology, 2 (4), 140. https://doi.org/10.4172/2161-0525.1000140

[8]

Bai, H., Liu, D., Zheng, W., Ma, L., Yang, S., Cao, J., Lu, X., Wang, H., & Mehta, N. (2021). Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments. International Biodeterioration & Biodegradation, 165, Article 105311. https://doi.org/10.1016/j.ibiod.2021.105311

[9]

Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78-91. https://doi.org/10.1016/S0141-0229(02)00245-4

[10]

I) Journal of Environmental Management, 215, 143-152. https://doi.org/10.1016/j.jenvman.2018.03.055

[11]

Bontognali, T. R. R., Mckenzie, J. A., Warthmann, R. J., & Vasconcelos, C. (2013). Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova, 26(1), 72-77. https://doi.org/10.1111/ter.12072

[12]

Chen, Y., He, M., Wang, C., & Wei, Y. (2014). A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(II), Cu(II) and Cr(III) ions from aqueous solutions. Journal of Materials Chemistry A, 2, 10444-10453. https://doi.org/10.1039/C4TA01512F

[13]

Chen, M., Li, Y., Jiang, X., Zhao, D., Liu, X., Zhou, J., He, Z., Zheng, C., & Pan, X. (2021). Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. Journal of Hazardous Materials, 411, Article 125103. https://doi.org/10.1016/j.jhazmat.2021.125103

[14]

Cheng, C., Han, H., Wang, Y. P., Wang, R., He, L. Y., & Sheng, X. F. (2020). Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil. Science of the Total Environment, 740, Article 139972. https://doi.org/10.1016/j.scitotenv.2020.139972

[15]

Coelho, E., Reis, T. A., Cotrim, M., Mullan, T., Renshaw T. K., J. Rizzutto, M., & Corrˆea, B. (2022). Talaromyces amestolkiae uses organic phosphate sources for the treatment of uranium-contaminated water. Biometals, 35, 335-348. https://doi.org/10.1007/s10534-022-00374-9

[16]

Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12, 971-986. https://doi.org/10.1007/s11440-017-0574-9

[17]

Cui, M. J., Lai, H. J., Wu, S. F., & Chu, J. (2022a). Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria induced carbonate precipitation. G´eotechnique. https://doi.org/10.1680/jgeot.21.00131

[18]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2022b). Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement. Acta Geotechnica, 17, 2931-2941. https://doi.org/10.1007/s11440-021-01384-6

[19]

Dacera, D. D. M., & Babel, S. (2008). Removal of heavy metals from contaminated sewage sludge using Aspergillus nigerfermented raw liquid from pineapple wastes. Bioresource Technology, 99, 1682-1689. https://doi.org/10.1016/j.biortech.2007.04.002

[20]

Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research., 27(2), 1319-1333. https://doi.org/10.1007/s11356-019-06967-1

[21]

Dhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106-117. https://doi.org/10.1016/j.ecoleng.2017.03.007

[22]

Dong, Y. R., Gao, Z. Q., Di, J. Z., Wang, D., Yang, Z. H., Wang, Y. F., Guo, X. Y., & Li, K. F. (2023). Experimental study on solidification and remediation of lead-zinc tailings based on microbially induced calcium carbonate precipitation (MICP). Construction and Building Materials, 369, Article 130611. https://doi.org/10.1016/j.conbuildmat.2023.130611

[23]

Duan, Q., Lee, J., Liu, Y., Chen, H., & Hu, H. (2016). Distribution of heavy metal pollution in surface soil samples in China: a graphical review. Bulletin of Environmental Contamination and Toxicology, 97, 303-309. https://doi.org/10.1007/s00128-016-1857-9

[24]

Eltarahony, M., Kamal, A., Zaki, S., & Abd-El-Haleem, D. (2013). Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola. Journal of Chemical Technology and Biotechnology, 96(11), 3152-3165. https://doi.org/10.1002/jctb.6868

[25]

Ersan, Y. C., de Belie, N., & Boon, N. (2015). Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochemical Engineering Journal, 101, 108-118. https://doi.org/10.1016/j.bej.2015.05.006

[26]

Fang, L., Niu, Q., Cheng, L., Jiang, J., Yu, Y. Y., Chu, J., Achal, V., & You, T. (2021). Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Science of the Total Environment, 787, Article 147627. https://doi.org/10.1016/j.scitotenv.2021.147627

[27]

Fominykh, K., Feckl, J. M., Sicklinger, J., D¨oblinger, M., B¨ocklein, S., Ziegler, J., Peter, L., Rathousky, J., Scheidt, E. W., & Bein, T. (2014). Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Advanced Functional Materials, 24, 3123-3129. https://doi.org/10.1002/adfm.201470134

[28]

Fu, T. Z., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), Article 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[29]

Fujita, Y., Grant Ferris, F., Daniel Lawson, R., Colwell, F. S., & Smith, R. W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J, 17, 305-318. https://doi.org/10.1080/01490450050193360

[30]

Fujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Grant Ferris, F., & Smith, R. W. (2004). Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68(15), 3261-3270. https://doi.org/10.1016/j.gca.2003.12.018

[31]

Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84, 13-28. https://doi.org/10.1002/jctb.1999

[32]

Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609-643. https://doi.org/10.1099/mic.0.037143-0

[33]

Gruji´c, S., Vasi´c, S., Radojevi´c, I., ˇComi´c, L., & Ostoji´c, A. (2017). Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential. Water, Air, & Soil Pollution, 228, 73. https://doi.org/10.1007/s11270-017-3259-y

[34]

Han, L. J., Li, J. S., Xue, Q., Guo, M. Z., Wang, P., & Poon, C. S. (2022). Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 314, Article 125577. https://doi.org/10.1016/j.conbuildmat.2021.125577

[35]

Han, L. J., Li, J. S., Chen, Z., & Xue, Q. (2023). Stabilization of Pb(II) in wastewater and tailings by commercial bacteria through microbially induced phosphate precipitation (MIPP). Science of the Total Environment, 868, Article 161628. https://doi.org/10.1016/j.scitotenv.2023.161628

[36]

He, J., Chen, X., Zhang, Q., & Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration & Biodegradation, 140, 67-71. https://doi.org/10.1016/j.ibiod.2019.03.012

[37]

He, Z. F., Zhang, Q. Y., Wei, Z., Zhu, Y. H., & Pan, X. L. (2020). Simultaneous removal of As(III) and Cu(II) from real bottom ash leachates by manganese-oxidizing aerobic granular sludge: Performance and mechanisms. Science of the Total Environment, 700, Article 134510. https://doi.org/10.1016/j.scitotenv.2019.134510

[38]

He, Z. F., Xu, Y. T., Wang, W. Y., Yang, X. L., Jin, Z. Z., Zhang, Z. Z., & Pan, X. L. (2023). Synergistic mechanism and application of microbially induced carbonate precipitation (MICP) and inorganic additives for passivation of heavy metals in copper-nickel tailings. Chemosphere, 311, Article 136981. https://doi.org/10.1016/j.chemosphere.2022.136981

[39]

Horiike, T., Dotsuta, Y., Nakano, Y., Ochiai, A., Utsunomiya, S., Ohnuki, T., & Yamashita, M. (2017). Removal of soluble strontium into biogenic carbonate minerals from a highly saline solution using halophilic bacterium, Bacillus sp. TK2d. Applied and Environmental Microbiology, 83(20), e00855-17. https://doi.org/10.1128/AEM.00855-17

[40]

Jain, S., Fang, C., & Achal, V. (2021). A critical review on microbial carbonate precipitation via denitrification process in building materials. Bioengineered, 12(1), 7529-7551. https://doi.org/10.1080/21655979.2021.1979862

[41]

Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from iranian mine calcareous soils. Journal of Soil Science and Plant Nutrition, 20, 206-219. https://doi.org/10.1007/s42729-019-00121-z

[42]

Jarwar, M. A., Del Buey, P., Sanz-Montero, M. E., Dumontet, S., Chianese, E., & Pasquale, V. (2023). Co-Precipitation of Cd, Cr, Pb, Zn, and Carbonates Using Vibrio harveyi Strain Isolated from Mediterranean Sea Sediment. Minerals, 13, 627. https://doi.org/10.3390/min13050627

[43]

Jiang, N. J., Liu, R., Du, Y. J., & Bi, Y. Z. (2019). Microbial induced carbonate precipitation for immobilizing Pb contaminants: toxic effects on bacterial activity and immobilization efficiency. Science of the Total Environment, 672, 722-731. https://doi.org/10.1016/j.scitotenv.2019.03.294

[44]

Jiang, Y., Zhao, X. Q., Zhou, Y. C., & Ding, C. C. (2022). Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead. Environmental Science and Pollution Research, 29, 58037-58052. https://doi.org/10.1007/s11356-022-19960-y

[45]

Kalyani, D., Lee, K. M., Kim, T. S., Li, J., Dhiman, S. S., Kang, Y. C., & Lee, J. K. (2013). Microbial consortia for saccharifcation of woody biomass and ethanol fermentation. Fuel, 107, 815-822. https://doi.org/10.1016/j.fuel.2013.01.037

[46]

Kang, C. H., Oh, S. J., Shin, Y. J., Han, S. H., Nam, I. H., & So, J. S. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402-407. https://doi.org/10.1016/j.ecoleng.2014.10.009

[47]

Kang, C. H., Kwon, Y. J., & So, J. S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64-69. https://doi.org/10.1016/j.ecoleng.2016.01.023

[48]

Kim, J. H., & Lee, J. Y. (2019). An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal. Journal of Material Cycles and Waste Management, 21, 239-247. https://doi.org/10.1007/s10163-018-0779-5

[49]

Kim, Y., Kwon, S., & Roh, Y. (2021). Effect of divalent cations (Cu, Zn, Pb, Cd, and Sr) on microbially induced calcium carbonate precipitation and mineralogical properties. Microbiological Chemistry and Geomicrobiology, 12, Article 646748. https://doi.org/10.3389/fmicb.2021.646748

[50]

Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59-67. https://doi.org/10.1016/j.jare.2017.10.009

[51]

Kumari, D., Pan, X., Achal, V., Zhang, D., Al-Misned, F.A., & Golam Mortuza M. Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China, Environmental Earth Sciences, 74, 3113-3121. 〈https://doi.org/10.1007/s12665-015-4349-z〉.

[52]

Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., G., & Gadd, G. M. (2016). Microbially-induced carbonate precipitation for immobilization of toxic metals. Advances in Applied Microbiology, 94, 79-108. https://doi.org/10.1016/bs.aambs.2015.12.002

[53]

Lai, H. J., Cui, M. J., Wu, S. F., Yang, Y., & Chu, J. (2021a). Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotechnica, 16, 1457-1472. https://doi.org/10.1007/s11440-021-01149-1

[54]

Lai, H. J., Cui, M. J., Wu, S. F., & Chu, J. (2021b). Recent development in biogeotechnology and its engineering applications. Frontiers of Structural and Civil Engineering, 2021, 15(5), 1073-1096. https://doi.org/10.1007/s11709-021-0758-0

[55]

Lai, H. J., Cui, M. J., & Chu, J. (2023). Effect of pH on soil improvement using One-phase-low-pH MICP or EICP biocementation method. Acta Geotechnica, 18, 3259-3272. https://doi.org/10.1007/s11440-022-01759-3

[56]

Li, M., Cheng, X. H., & Guo, H. X. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81-85. https://doi.org/10.1016/j.ibiod.2012.06.016

[57]

Li, Q., Csetenyi, L., Paton, G., & Gadd, G. M. (2015). CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environmental Microbiology, 17(8), 3082-3097. https://doi.org/10.1111/1462-2920.12954

[58]

Li, Q., & Gadd, G. M. (2017). Fungal nanoscale metal carbonates and production of electrochemical materials. Microbial Biotechnology, 10(5), 1131-1136. https://doi.org/10.1111/1751-7915.12765

[59]

Li, M., Ali, A., Li, Y. F., Su, J. F., & Zhang, S. (2022a). The performance and mechanism of simultaneous removal of calcium and heavy metals by Ochrobactrum sp. GMC12 with the chia seed (Salvia hispanica) gum as a synergist. Chemosphere, 297, Article 134061. https://doi.org/10.1016/j.chemosphere.2022.134061

[60]

Li, Y. F., Su, J. F., Ali, A., Hao, Z. L., Li, M., Yang, W. S., & Wang, Z. (2022b). Simultaneous removal of nitrate and heavy metals in a biofilm reactor filled with modified biochar. Science of the Total Environment, 851, Article 158175. https://doi.org/10.1016/j.scitotenv.2022.158175

[61]

Liang, X. J., Csetenyi, L., & Gadd, G. M. (2016). Lead Bioprecipitation by Yeasts Utilizing Organic Phosphorus Substrates. Geomicrobiology Journal, 33(3-4), 294-307. https://doi.org/10.1080/01490451.2015.1051639

[62]

Lu, T., Wei, Z. A., Hesham El Naggar, M., Wang, W. S., & Yang, Y. H. (2023). Effect of chemical environment on copper tailings reinforced by microbially induced carbonate precipitation. Construction and Building Materials, 400, Article 132894. https://doi.org/10.1016/j.conbuildmat.2023.132894

[63]

Mbamba, C. K., Batstone, D. J., Flores-Alsina, X., & Tait, S. (2015). A generalised chemical precipitation modeling approach in wastewater treatment applied to calcite. Water Research, 68, 342-353. https://doi.org/10.1016/j.watres.2014.10.011

[64]

Meng, S. S., Peng, T., Pratush, A., Huang, T. W., & Hu, Z. (2021). Interactions between heavy metals and bacteria in mangroves. Marine Pollution Bulletin, 172, Article 112846. https://doi.org/10.1016/j.marpolbul.2021.112846

[65]

Mitchell, A. C., & Ferris, F. G. (2005). The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochimica et Cosmochimica Acta, 69(17), 4199-4210. https://doi.org/10.1016/j.gca.2005.03.014

[66]

Moghal, A. A. B., Lateef, M. A., Mohammed, S. A. S., Ahmad, M., Usman, A. R. A., & Almajed, A. (2020a). Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Applied Sciences, 10, 7568. https://doi.org/10.3390/app10217568

[67]

Moghal, A. A. B., Lateef, M. A., Mohammed, S. A. S., Lemboye, K., Chittoori, B. C. S., & Almajed, A. (2020b). Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustainability, 12, 7019. https://doi.org/10.3390/su12177019

[68]

Moghal, A. A. B., Rasheed, R. M., & Mohammed, S. A. S. (2023). Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines. Indian Geotechnical Journal, 53(2), 315-333. https://doi.org/10.1007/s40098-022-00638-8

[69]

Mwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering, 109, 57-64. https://doi.org/10.1016/j.ecoleng.2017.09.011

[70]

Mwandira, W., Nakashima, K., Kawasaki, S., Ito, M., Sato, T., Igarashi, T., Chirwa, M., Banda, K., & Nyambe, I. (2019). Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere, 228, 17-25. https://doi.org/10.1016/j.chemosphere.2019.04.107

[71]

O’Donnell, S. T., Rittmann, B. E., & Kavazanjian, E., Jr. (2019). Factors controlling microbially induced desaturation and precipitation (MIDP) via denitrification during continuous flow. Geomicrobiology Journal, 36(6), 543-558. https://doi.org/10.1080/01490451.2019.1581858

[72]

Qian, X., Fang, C., Huang, M., & Achal, V. (2017). Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 164, 198-208. https://doi.org/10.1016/j.jclepro.2017.06.195

[73]

Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, Article 129661. https://doi.org/10.1016/j.chemosphere.2021.129661

[74]

Rawat, N., Mohapatra, P. K., Lakshmi, D. S., Bhattacharyya, A., & Manchanda, V. K. (2006). Evaluation of a supported liquid membrane containing a macrocyclic ionophore for selective removal of strontium from nuclear waste solution. Journal of Membrane Science, 275, 82-88. https://doi.org/10.1016/j.memsci.2005.09.006

[75]

Rinaldi, M., Micali, A., Marini, H., Adamo, E. B., Puzzolo, D., Pisani, A., Trichilo, V., Altavilla, D., Squadrito, F., & Minutoli, L. (2017). Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Current Medicinal Chemistry, 24(35), 3879-3893. https://doi.org/10.2174/0929867324666170801101448

[76]

Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, Article 124835. https://doi.org/10.1016/j.biortech.2021.124835

[77]

Su, Y. Q., Zhao, Y. J., Zhang, W. J., Chen, G. C., Qin, H., Qiao, D. R., Chen, Y. E., & Cao, Y. (2020). Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. Chemosphere, 243, Article 125166. https://doi.org/10.1016/j.chemosphere.2019.125166

[78]

Surowitz, K. G., Titus, J. A., & Pfister, R. M. (1984). Effects of cadmium accumulation on growth and respiration of a cadmium-sensitive strain of Bacillus subtilis and a selected cadmium resistant mutant. Archives of Microbiology, 140, 107-112. https://doi.org/10.1007/BF00454911

[79]

Suyamud, B., Ferrier, J., Csetenyi, L., Inthorn, D., & Gadd, G. M. (2020). Biotransformation of struvite by Aspergillus Niger: phosphate release and magnesium biomineralization as glushinskite. Environmental Microbiology, 22, 1588-1602. https://doi.org/10.1111/1462-2920.14949

[80]

Tang, F., Yue, J. R., Tian, J., Ge, F., Li, F., Liu, Y., Deng, S. Q., & Zhang, D. Y. (2022). Microbial induced phosphate precipitation accelerate lead mineralization to alleviate nucleotide metabolism inhibition and alter Penicillium oxalicum’s adaptive cellular machinery. Journal of Hazardous Materials, 439, Article 129675. https://doi.org/10.1016/j.jhazmat.2022.129675

[81]

Torres-Aravena, A. E., Duarte-Nass, C., Az´ocar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters? Crystals, 8, 438. https://doi.org/10.3390/cryst8110438

[82]

Tu, H., Yuan, G. Y., Zhao, C. S., Liu, J., Li, F. Z., Yang, J. J., Liao, J. L., Yang, Y. Y., & Liu, N. (2019). U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids. Nuclear Engineering and Technology, 51, 1322-1332. https://doi.org/10.1016/j.net.2019.03.002

[83]

van Lith, Y., Warthmann, R., Vasconcelos, C., & Mckenzie, J. A. (2003). Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71-79. https://doi.org/10.1046/j.1472-4669.2003.00003.x

[84]

van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zonb, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36, 168-175. https://doi.org/10.1016/j.ecoleng.2009.03.026

[85]

Wang, M., Wu, S., Guo, J., Zhang, X., Yang, Y., Chen, F., & Zhu, R. (2019a). Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. Journal of Hazardous Materials, 366, 684-693. https://doi.org/10.1016/j.jhazmat.2018.12.049

[86]

Wang, Q., Xiao, C. Q., Feng, B., & Chi, R. (2019b). Phosphate rock solubilization and the potential for lead immobilization by a phosphate-solubilizing bacterium (Pseudomonas sp.). Journal of Environmental Science and Health Part A, 237, Article 124540. https://doi.org/10.1080/10934529.2019.1704134

[87]

Wang, W. D., Duan, Y. T., Wu, Y. M., Huang, Y., Gao, F. W., Wang, Z., & Zheng, C. L. (2021). Harmless treatment of cyanide tailings by a bifunctional strain JK-1 based on biodegradation and biomineralization. Journal of Cleaner Production, 313, Article 127757. https://doi.org/10.1016/j.jclepro.2021.127757

[88]

Wang, K. D., Wu, S. F., & Chu, J. (2023a). Mitigation of soil liquefaction using microbial technology: An overview. Biogeotechnics, 1(1), Article 100005. https://doi.org/10.1016/j.bgtech.2023.100005

[89]

Wang, L., Cheng, W. C., Xue, Z. F., Zhang, B., & Lv, X. J. (2023b). Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation. Environmental Pollution, 319, Article 120947. https://doi.org/10.1016/j.envpol.2022.120947

[90]

Wang, Y., Konstantinou, C., Tang, S., & Chen, H. (2023c). Applications of microbial-induced carbonate precipitation: A state-of-the-art review. Biogeotechnics, 1(1), Article 100008. https://doi.org/10.1016/j.bgtech.2023.100008

[91]

Warren, L. A., Maurice, P. A., Parmar, N., & Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology. J, 18, 93-115. https://doi.org/10.1080/01490450151079833

[92]

Wei, Y. Q., Zhao, Y., Shi, M. Z., Gao, Z. Y., Lu, Q., Yang, T. X., Fan, Y. Y., & Wei, Z. M. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092

[93]

Whiffin, V. S. (2004). Microbial CaCO3 Precipitation for the Production of Biocement. Perth, Western Australia: Murdoch University,.

[94]

Xu, M., Ma, J., Zhang, X. H., Yang, G., Long, L. L., Chen, C., Song, C., Wu, J., Gao, P., & Guan, D. X. (2023). Biochar-bacteria partnership based on microbially induced calcite precipitation improves Cd immobilization and soil function. Biochar, 5, 20. https://doi.org/10.1007/s42773-023-00222-0

[95]

Xue, Z. F., Cheng, W. C., Xie, Y. X., Wang, L., Hu, W., & Zhang, B. (2023). Investigating immobilization efficiency of Pb in solution and loess soil using bio-inspired carbonate precipitation. Environmental Pollution, 322, Article 121218. https://doi.org/10.1016/j.envpol.2023.121218

[96]

Yamina, B., Tahar, B., & Laure, F. M. (2012). Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Science & Technology, 66(10), 2041-2048. https://doi.org/10.2166/wst.2012.355

[97]

Yin, T., Lin, H., Dong, Y., Li, B., He, Y., Liu, C., & Chen, X. (2021). A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. Journal of Hazardous Materials, 401, Article 123269. https://doi.org/10.1016/j.jhazmat.2020.123269

[98]

Yu, L., Zhang, Y. T., Wang, Y. M., Zhang, H. Q., & Liu, J. D. (2015). High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres. Journal of Hazardous Materials, 287, 373-383. https://doi.org/10.1016/j.jhazmat.2015.01.057

[99]

Yu, X. N., & Jiang, J. G. (2020). Phosphate microbial mineralization consolidation of waste incineration flyash and removal of lead ions. Ecotoxicology and Environmental Safety, 191, Article 110224. https://doi.org/10.1016/j.ecoenv.2020.110224

[100]

Yu, Q. H., Yuan, Y. H., Feng, L. J., Sun, W. Y., Lin, K., Zhang, J. C., Zhang, Y. B., Wang, H., Wang, N., & Peng, Q. (2022). Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. Journal of Hazardous Materials, 424, Article 127758. https://doi.org/10.1016/j.jhazmat.2021.127758

[101]

Yu, X. N., Jiang, N. J., Yang, Y., Liu, H. J., Gao, X. C., & Cheng, L. (2023). Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics. Ecotoxicology and Environmental Safety, 263, Article 115305. https://doi.org/10.1016/j.ecoenv.2023.115305

[102]

Yuan, Z. M., Yi, H. H., Wang, T. Q., Zhang, Y. Y., Zhu, X. Z., & Yao, J. (2017). Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environmental Science and Pollution Research, 24, 21877-21884. https://doi.org/10.1007/s11356-017-9832-5

[103]

Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils-a review. Journal of Hazardous Materials, 339, 354-367. https://doi.org/10.1016/j.jhazmat.2017.05.038

[104]

Zeng, G. Q., Qiao, S. Y., Wang, X. T., Sheng, M. P., Wei, M. Y., Chen, Q., Xu, H., & Xu, F. (2021). Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation. Journal of Hazardous Materials, 412, Article 125156. https://doi.org/10.1016/j.jhazmat.2021.125156

[105]

Zha, F. S., Wang, H., Kang, B., Liu, C. M., Xu, L., & Tan, X. H. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals, 11, 1303. https://doi.org/10.3390/cryst11111303

[106]

Zhang, Z., Guo, G. L., Wang, M., Zhang, J., Wang, Z. X., Li, F. S., & Chen, H. H. (2018). Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks. Environmental Science and Pollution Research, 25, 2861-2868. https://doi.org/10.1007/s11356-017-0664-0

[107]

Zhang, K. J., Xue, Y. W., Xu, H. H., & Yao, Y. N. (2019). Lead removal by phosphate solubilizing bacteria isolated from soil through biomineralization. Chemosphere, 224, 272-279. https://doi.org/10.1016/j.chemosphere.2019.02.140

[108]

Zhang, K. J., Su, P., Li, Y., & Li, L. (2021a). Environmental investigation of bio-modification of Steel slag through microbially induced carbonate precipitation. Journal of Environmental Sciences, 101, 282-292. https://doi.org/10.1016/j.jes.2020.08.023

[109]

Zhang, M., Zhao, L., Li, G. K., Zhu, C., Dong, S., Li, Z., Tang, C., Ji, J., & Chen, J. (2021b). Microbially Induced Magnesium Carbonate Precipitation and its Potential Application in Combating Desertification. Geomicrobiology. J, 38(6), 549-560. https://doi.org/10.1080/01490451.2021.1900461

[110]

Zhang, P., Liu, X. Q., Yang, L. Y., Sheng, H. Z. Y., Qian, A. Q., & Fan, T. (2023a). Immobilization of Cd2+ and Pb2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. Environmental Science and Pollution Research, 30, 22471-22482. https://doi.org/10.1007/s11356-022-23587-4

[111]

Zhang, M., Xiong, J., Zhou, L., Li, J. J., Fan, J. Q., Li, X., Zhang, T., Yin, Z. Z., Yin, H. Q., Liu, X. D., & Meng, D. L. (2023b). Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies. Journal of Hazardous Materials, 459, Article 132256. https://doi.org/10.1016/j.jhazmat.2023.132256

[112]

Zhao, Y., Yao, J., Yuan, Z., Wang, Z., Zhang, Y, T., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372-380. https://doi.org/10.1007/s11356-016-7810-y

[113]

I) and its role in copper-contaminated soil remediation. Journal of Hazardous Materials, 368, 133-140. https://doi.org/10.1016/j.jhazmat.2019.01.029

[114]

Zhou, Y. C., Zhao, X. Q., Jiang, Y., Ding, C. C., Liu, J. G., & Zhu, C. (2023). Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria. Science of the Total Environment, 861, Article 160649. https://doi.org/10.1016/j.scitotenv.2022.160649

[115]

Zhu, X. J., Li, W. L., Zhan, L., Huang, M. S., Zhang, Q. Z., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149-155. https://doi.org/10.1016/j.envpol.2016.10.047

[116]

Zhu, X. L., Lv, B. X., Shang, X. Q., Wang, J. Q., Li, M., & Yu, X. Y. (2019). The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus-degrading bacteria (OPDB) with rapeseed dregs in acidic soil. Geoderma, 350, 1-10. https://doi.org/10.1016/j.geoderma.2019.04.015

[117]

Zhuang, X., Han, Z., Bai, Z., Zhuang, G., & Shim, H. (2010). Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environmental Pollution, 158, 1119-1126. https://doi.org/10.1016/j.envpol.2010.01.007

AI Summary AI Mindmap
PDF (3767KB)

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/