Experimental study on permeability and strength characteristics of MICP-treated calcareous sand

Yumin Chen , Yi Han , Xinlei Zhang , Saeed Sarajpoor , Shuhang Zhang , Xiaofei Yao

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) : 100034

PDF (7147KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) :100034 DOI: 10.1016/j.bgtech.2023.100034
Research article
research-article

Experimental study on permeability and strength characteristics of MICP-treated calcareous sand

Author information +
History +
PDF (7147KB)

Abstract

Calcareous sand is the main fill material for island reclamation projects, but untreated calcareous sand might not be used as a reclamation fill due to its poor mechanical properties. Microbial induced calcite precipitation (MICP) was directly used to consolidate calcareous sands. One-dimensional sand column tests were conducted to identify the optimized solutions and to investigate the effects of cement solution concentration, relative density, and consolidation frequencies on the permeability and mechanical properties of MICP-treated calcareous sands. Finally, three-dimensional model tests were carried out to investigate the effective consolidation range of microbially treated calcareous sands. The results show that the MICP-treated calcareous sand shows a reduction in the permeability of the sample, while the calcium carbonate cementation and its filling effect improves the mechanical properties of the soil. The one-dimentional test results show that the effective values for cement solution concentration, relative density, and consolidation frequencies range from 0.5 mol/L to 1.5 mol/L, 30%-70%, and 5-15 times. The consolidation frequencies have the greatest influence on the permeability and strength properties of the treated calcareous sand. A quadratic polynomial regression model for permeability and strength was established through response surface analysis, and the regression model proved to be highly accurate and reliable through testing. In three-dimentional tests, the consolidation range tends to move downwards in a trapezoidal shape, showing a "big bottom and small top" pattern, with a consolidation range of approximately 34 times the diameter of the pipe. This study serves as a reference for selecting consolidation parameters for subsequent tests and applications of MICP-treated calcareous sands.

Keywords

Microbially-induced carbonate precipitation (MICP) / Calcareous sand / Mechanical properties / Permeability

Cite this article

Download citation ▾
Yumin Chen, Yi Han, Xinlei Zhang, Saeed Sarajpoor, Shuhang Zhang, Xiaofei Yao. Experimental study on permeability and strength characteristics of MICP-treated calcareous sand. Biogeotechnics, 2023, 1(3): 100034 DOI:10.1016/j.bgtech.2023.100034

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Yumin Chen is an editorial board member for Biogeotechnics and was not involved in the editorial review or the decision to publish this article.

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51879090 and Grant No. 52179101).

References

[1]

ASTM. Standard test method for unconfined compressive strength of cohesive soil 2017.

[2]

ASTM. (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM D2487.

[3]

Brandes, H. (2011). Simple Shear Behavior of Calcareous and Quartz Sands. Geotech. Geol. Eng., 29, 113-126. https://doi.org/10.1007/s10706-010-9357-x

[4]

Chen, L. X., Song, Y. Q., Huang, J. C., Lai, C. H., Jiao, H., Fang, H., Zhu, J. J., & Song, X. Y. (2021). Critical Review of Solidification of Sandy Soil by Microbially Induced Carbonate Precipitation (MICP). Crystals, 11, 1439. https://doi.org/10.3390/cryst11121439

[5]

Cui, M. J., Zheng, J. J., Zhang, R., Lai, H., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech, 12(5), 971-986. https://doi.org/10.1007/s11440-017-0574-9

[6]

Cui, M. J., Zheng, J. J., Chu, J., Wu, C. C., & Lai, H. J. (2021). Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotech, 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0

[7]

El Kortbawi, M., Moug, D., Ziotopoulou, K., Dejong, J., & Boulanger, R. (2022). Axisymmetric Simulations of Cone Penetration in Biocemented Sands. J. Geotech. Geoenviron. Eng., 148, 04022098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002914

[8]

Fang, X., Yang, Y., Chen, Z., Liu, H., Xiao, Y., & Shen, C. (2020). Influence of fiber content and length on engineering properties of MICP-treated coral sand. Geomicrobiology Journal, 37(6), 582-594. https://doi.org/10.1080/01490451.2020.1743392

[9]

Gao, Y., Hang, L., He, J., & Chu, J. (2019). Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech, 14, 697-707. https://doi.org/10.1007/s11440-018-0729-3

[10]

Gao, Y., Yu, J. Y., Wang, Y. B., Li, W. L., & Shi, T. G. (2022). Breakage effect of calcareous sand on pile tip resistance and the surrounding soil stress. Energy. Rep., 8, 183-190. https://doi.org/10.1016/j.egyr.2022.03.074

[11]

Han, Y., Chen Y. M, Chen R. Z, Liu H. L, & Yao, X. F. (2023). Effect of incorporating discarded facial mask fiber on mechanical properties of MICP-treated sand. Constr. Build. Mater., 395, 132299. https://doi.org/10.1016/j.conbuildmat.2023.132299

[12]

He, S., Goudarzy, M., Ding, Z., & Sun, Y. (2022). Strength, deformation and particle breakage behaviour of calcareous sand: the role of anisotropic consolidation. J. Geotech. Geoenviron. Eng., 149( 3), Article 04023002. https://doi.org/10.1061/JGGEFK.GTENG-10501

[13]

Lai, H., Wu, S., Cui, M., & Chu, J. (2021a). Recent development in biogeotechnology and its engineering applications. Front. Struct. Civ. E, 15( 5), 1073-1096. https://doi.org/10.1007/s11709-021-0758-0

[14]

Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021b). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Constr. Build. Mater., 273, Article 121729. https://doi.org/10.1016/j.conbuildmat.2020.121729

[15]

Li, Y., & Chen, J. (2022). Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP. Appl. Sci., 12, 11447. https://doi.org/10.3390/app122211447

[16]

Li, Y. J., Guo, Z., Wang, L. Z., & Yang, H. K. (2023). A coupled bio-chemo-hydro-wave model and multi-stages for MICP in the seabed. Ocean. Eng., 280, 114667. https://doi.org/10.1016/j.oceaneng.2023.114667

[17]

Liu, J., Li, X., Li, G., & Zhang, J. (2023). Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Mater, 16, 1949. https://doi.org/10.3390/ma16051949

[18]

Liu, L., Liu, H., Xiao, Y., Chu, J., Xiao, P., & Wang, Y. (2017). Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull. Eng. Geol. Environ., 77, 1-11. https://doi.org/10.1007/s10064-017-1106-4

[19]

Luo, Z. G., Ding, X. M., Ou, Q., & Fang, H. Q. (2023). Bearing capacity and deformation behavior of rigid strip footings on coral sand slopes. Ocean. Eng., 267, 113317. https://doi.org/10.1016/j.oceaneng.2022.113317

[20]

Naeimi, M., & Chu, J. (2017). Comparison of Conventional and Bio-treated Methods as a Dust Suppressant. Environ. Sci. Pollut. R., 24, 23341-23350. https://doi.org/10.1007/s11356-017-9889-1

[21]

Nakibul, M., Khan, Md. N., Amarakoon, G., Shimazaki, S., & Kawasaki, S. (2015). Coral Sand Solidification Test Based on Microbially Induced Carbonate Precipitation Using Ureolytic Bacteria. Mater. Trans, 56, 1725-1732. https://doi.org/10.2320/matertrans.M-M2015820

[22]

Peng, S., Di, H., Fan, L., Wang, F., & Qin, L. (2020). Factors Affecting Permeability Reduction of MICP for Fractured Rock. Front. Earth. Sci., 8, 19-26. https://doi.org/10.3389/feart.2020.00217

[23]

Prabakar, J., & Sridhar, R. S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr. Build. Mater., 16(2), 123-131. https://doi.org/10.1016/S0950-0618(02)00008-9

[24]

Tang, C., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ. Earth. Sci., 79(5), 1-23. https://doi.org/10.1007/s12665-020-8840-9

[25]

Tian, Z. F., Tang, X., Li, W., Xiu, Z. L., & Xue Z.J (2021). Influence of the Grouting Parameters on Microbially Induced Carbonate Precipitation for Soil Stabilization. Geomicrobiol J, 38, 755-767. https://doi.org/10.1080/01490451.2020.1743392

[26]

Tong, Y., Hanene, S., Yoan, P., & Fleureau, J. M. (2021). Review on engineering properties of MICP-treated soils. Geomech. Eng., 27(1), 13-30. https://doi.org/10.12989/gae.2021.27.1.013

[27]

van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., & van Loosdrecht, M. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng., 136, 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[28]

Wang, K., Wu, S., & Chu, J. (2023). Mitigation of soil liquefaction using microbial technology: An overview. Biogeotechnics, 1, 100005. https://doi.org/10.1016/j.bgtech.2023.100005

[29]

Wang, X. Z., Jiao, Y. Y., Wang, R., Hu, M. J., Meng, Q. S., & Tan, F. Y. (2011). Engineering characteristics of the Calcareous Sand in Nansha Islands, South China Sea. Eng. Geol., 120, 40-47. https://doi.org/10.1016/j.enggeo.2011.03.011

[30]

Wang, Y., Jiang, N. J., Clar`a Saracho, A., Doygun, O., Du, Y., & Han, X. (2022). Compressibility Characteristics of Bio-Cemented Calcareous Sand Treated through the Bio-stimulation Approach. J. Rock. Mech. Geotech. Eng., 15( 2), 510-522. https://doi.org/10.1016/j.jrmge.2022.05.007

[31]

Wei, H. Z., Liu, H., Li, X. X., Tao, Z., Wu, Y. J., Shen, J. H., & Yin, M. (2023). Effect of stress path on the mechanical properties of calcareous sand. Undergr. Space., 9, 20-30. https://doi.org/10.1016/j.undsp.2022.06.003

[32]

Wu, C. Z., Chu, J., Shifan, W., & Hong, Y. (2018). 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction. Eng. Geol., 249, 23-30. https://doi.org/10.1016/j.enggeo.2018.12.017

[33]

Xiao, P., Liu, H., Xiao, Y., Stuedlein, A. W., & Evans, T. M. (2018). Liquefaction resistance of bio-cemented calcareous sand. Soli. Dyn. Earthq. Eng., 107, 9-19. https://doi.org/10.1016/j.soildyn.2018.01.008

[34]

Xu, L. J., Wang, R., Xu, D. S., Wang, X. Z., Meng, Q. S., & Zhu, C. Q. (2022). Review of Particle Breakage Measurement Methods for Calcareous Sand. Adv. Civ. Eng., 2022, 1-13. https://doi.org/10.1155/2022/6477197

[35]

Xu, X. C., Wang, H. T., Lin W. Bin, Cheng, X. H., & Guo, H. X. (2021). Desert Aeolian Sand Cementation via Microbially Induced Carbonate Precipitation. IFCEE: 2021, 282-289. https://doi.org/10.1061/9780784483411.027

[36]

Yang, Y., Xiao, Y., Cheng, L., Shahin, M. A., & Liu, H. (2022). In situ biomass flocculation improves placement of Sporosarcina Pasteurii for microbially mediated sandy soil stabilization. Acta. Geotech., 17(10), 4435-4445. https://doi.org/10.1007/s11440-022-01538-0

[37]

Ye, J. H., Yeernaer, H., Cao, M., Zuo, D. J., & Chai, X. W. (2022). Creep characteristics of calcareous coral sand in the South China Sea. Acta. Geotech., 17, 5133-5155. https://doi.org/10.1007/s11440-022-01634-1

[38]

Yu, X., & Pan, X. (2022). Seawater based bio-cementation for calcareous sand improvement in marine environment. Mar. Georesor. Geotec., 1-10. https://doi.org/10.1080/1064119X.2022.2111672

[39]

Zeng, H., Yin, L. Y., Tang, C. S., Zhu, C., Cheng, Q., Li, H., Lv, C., & Shi, B. (2021). Tensile behavior of bio-cemented, fiber-reinforced calcareous sand from coastal zone. Eng. Geol., 294, 106390. https://doi.org/10.1016/j.enggeo.2021.106390

[40]

Zhang, J. W., Yin, Y., Shi, L., Han, Y., Zhou, M., & Zhang, X. H. (2023). Experimental Study for the Cementation Effect of Dust Soil by Using Soybean Urease. J. Renew. Mater., 11(6). https://doi.org/10.32604/jrm.2023.025436

[41]

Zhang, X., Chen, Y., Liu, H., Zhang, Z., & Ding, X. (2020). Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soli. Dyn. Earthq. Eng., 129, 105959. https://doi.org/10.1016/j.soildyn.2019.105959

[42]

Zhang, X., Guo, J., Chen, Y., Han, Y., Yi, R., Gao, H., Liu, L., Liu, H., & Shen, Z. (2022). Dynamic Shear Modulus and Damping of MICP-treated Calcareous Sand at Low Strains. Appl. Sci., 12(23), 12175. https://doi.org/10.20944/preprints202207.0352.v1

[43]

Zheng, W. C., Arumugam, K., Ashari, E., Faizal Wong, F., Joo Shun, T., Ariff, A., & Mohamed, M. (2020). Enhancement of Biomass and Calcium Carbonate Biomineralization of Chlorella vulgaris through Plackett-Burman Screening and Box-Behnken Optimization Approach. Molecules, 25, 3416. https://doi.org/10.3390/molecules25153416

[44]

Zhou, B., Zhang, X., Wang, J. F., Wang H. Bin, & Shen, J. W. (2022). Insight into the mechanism of microbially induced carbonate precipitation treatment of bio-improved calcareous sand particles. Acta. Geotech., 18(2), 985-999. https://doi.org/10.1007/s11440-022-01625-2

[45]

Zhou, X., Stuedlein, A. W., Chen, Y., Zhang, Z., & Liu, H. (2020). Cyclic Response of Loose Anisotropically Consolidated Calcareous Sand under Progressive Wave- Induced Elliptical Stress Paths. J. Geotech. Geoenviron. Eng., 146( 12), Article 04020143. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002422

PDF (7147KB)

96

Accesses

0

Citation

Detail

Sections
Recommended

/