Bio-grouting technologies for enhancing uniformity of biocementation: A review

Junjie Zheng , Hanjiang Lai , Mingjuan Cui , Xingzhi Ding , Yajie Weng , Jianwei Zhang

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) : 100033

PDF (2925KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) :100033 DOI: 10.1016/j.bgtech.2023.100033
Review article
research-article

Bio-grouting technologies for enhancing uniformity of biocementation: A review

Author information +
History +
PDF (2925KB)

Abstract

Biocementation-based soil improvement is an emerging ground treatment method in geotechnical engineering that has garnered extensive attention over the past two decades. One of the challenges associated with this method revolves around the uniformity of biocementation, a crucial factor closely tied to bio-grouting technology. The traditional biotreatment methods, the two-phase method and the one-phase method, suffer from the issue of non-uniform biocementation. Consequently, in recent years, various improved grouting technologies have been proposed to address this concern by aiding bacterial adsorption and controlling carbonate precipitation. This paper reviews the mechanisms and grouting processes employed in these enhanced bio-grouting technologies. Additionally, the challenges of implementing these grouting technologies in real-world applications are also thoroughly discussed.

Keywords

Biocementation / Soil improvement / Grouting technology / Uniformity

Cite this article

Download citation ▾
Junjie Zheng, Hanjiang Lai, Mingjuan Cui, Xingzhi Ding, Yajie Weng, Jianwei Zhang. Bio-grouting technologies for enhancing uniformity of biocementation: A review. Biogeotechnics, 2023, 1(3): 100033 DOI:10.1016/j.bgtech.2023.100033

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Junjie Zheng and Jianwei Zhang are editorial board members, Mingjuan Cui is an early career editorial board member for Biogeotechnics and were not involved in the editorial review or the decision to publish this article.

Acknowledgments

The authors would like to thank the financial support by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52178319, 52108307, 52078236, 51878313, 51708243), and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2022J05020, 2022J05127).

References

[1]

Almajed, A., Khodadadi, T. H., & Kavazanjian E., Jr. (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), Article 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.000197

[2]

Cheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376-1385. https://doi.org/10.1139/cgj-2015-0635

[3]

Cheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), Article 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

[4]

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14, 615-626. https://doi.org/10.1007/s11440-018-0738-2

[5]

Chuo, S. C., Mohamed, S. F., Mohd Setapar, S. H., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A., & Ibrahim, M. N. Mohamad (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 4993. https://doi.org/10.3390/ma13214993

[6]

Cui, M. J., Lai, H. J., Wu, S. F., & Chu, J. (2022). Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation. G´eotechnique. https://doi.org/10.1680/jgeot.21.00131

[7]

Cui, M. J., Zheng, J. J., Zhang, R. J., & Lai, H. J. (2020). Soil bio-cementation using an improved 2-step injection method. Arabian Journal of Geosciences, 13, 1270. https://doi.org/10.1007/s12517-020-06168-y

[8]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2021). One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 16, 481-489. https://doi.org/10.1007/s11440-020-01043-2

[9]

Cui, M. J., Lai, H. J., Hoang, T., & Chu, J. (2022). Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement. Acta Geotechnica, 17(7), 2931-2941. https://doi.org/10.1007/s11440-021-01384-6

[10]

Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behavior of bio-cemented sand. Acta Geotechnica, 12, 971-986. https://doi.org/10.1007/s11440-017-0574-9

[11]

Darby, K. M., Hernandez, G. L., DeJong, J. T., Boulanger, R. W., Gomez, M. G., & Wilson, D. W. (2019). Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), Article 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.000212

[12]

Dejong, J., Martinez, B., Ginn, T., Hunt, C., Major, D., & Tanyu, B. (2014). Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications. Geotechnical Testing Journal, 37 (3), 424-435. https://doi.org/10.1520/GTJ20130089

[13]

Dilrukshi, R. A. N., & Kawasaki, S. (2016). Effective use of plant-derived urease in the field of geoenvironmental. Journal of Civil & Environmental Engineering, 6(1), Article 1000207. https://doi.org/10.4172/2165-784X.1000207

[14]

Feng, K., & Montoya, B. M. (2017). Quantifying level of microbial-induced cementation for cyclically loaded sand. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), Article 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682

[15]

Fu, T. Z., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), Article 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[16]

Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004

[17]

Hoang, T., Alleman, J., Cetin, B., Ikuma, K., & Choi, S. G. (2019). Sand and silty-sand soil stabilization using bacterial enzyme—induced calcite precipitation (BEICP). Canadian Geotechnical Journal, 56, 808-822. https://doi.org/10.1139/cgj-2018-0191

[18]

Huey, C. E., Yahya, W. Z. N., & Mansor, N. (2019). Allicin incorporation as urease inhibitor in a chitosan/starch based biopolymer for fertilizer application. Materials Today: Proceedings, 16, 2187-2196. https://doi.org/10.1016/j.matpr.2019.06.109

[19]

Jiang, N. J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. G´eotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182

[20]

Lai, H. J., Cui, M. J., & Chu, J. (2022). Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01759-3

[21]

Lai, H. J., Cui, M. J., Wu, S. F., & Chu, J. (2021). Recent development in biogeotechnology and its engineering applications. Frontiers of Structural and Civil Engineering, 15(5), 1073-1096. https://doi.org/10.1007/s11709-021-0758-0

[22]

Li, S., Li, J., Lu, J., & Wang, Z. (2015). Effect of mixed urease inhibitors on N losses from surface-applied urea. International Journal of Agricultural Science and Technology, 3 (1), 23-27. https://doi.org/10.12783/ijast.2015.0301.04

[23]

Liu, L., Liu, H. L., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 56(10), 1502-1513. https://doi.org/10.1139/cgj-2018-0007

[24]

Ma, G. L., He, X., Jiang, X., Liu, H. L., Chu, J., & Xiao, Y. (2021). Strength and permeability of bentonite-assisted biocemented coarse sand. Canadian Geotechnical Journal, 58(7), 969-981. https://doi.org/10.1139/cgj-2020-0045

[25]

Manunza, B., Deiana, S., Pintore, M., & Gessa, C. (1999). The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biology and Biochemistry, 31(5), 789-796. https://doi.org/10.1016/S0038-0717(98)00155-2

[26]

Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598. https://doi.org/10.1016/S0038-0717(98)00155-2

[27]

Nafisi, A., Safavizadeh, S., & Montoya, B. M. (2019). Influence of microbe and enzyme-induced treatments on cemented sand shear response. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), Article 06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.000211

[28]

Omoregie, A. I., Muda, K., Ong, D. E. L., Ojuri, O. O., Bakri, M. K. B., Rahman, M. R., Basri, H. F., & Ling, Y. E. (2023). Soil bio-cementation treatment strategies: State-of-the-art review. Geotechnical Research, 40, 1-25. https://doi.org/10.1680/jgere.22.00051

[29]

Pan, X. H., Chu, J., Yang, Y., & Cheng, L. (2020). A new biogrouting method for fine to coarse sand. Acta Geotechnica, 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0

[30]

Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of microencapsulation techniques for MICP bacterial spores applied in self-healing concrete. Scientific Reports, 9(1), 12484. https://doi.org/10.1038/s41598-019-49002-6

[31]

Schultze-Lam, S., Fortin, D., Davis, B. S., & Beveridge, T. J. (1996). Mineralization of bacterial surfaces. Chemical Geology, 132, 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8

[32]

Shahrokhi-Shahraki, R., Zomorodian, S. M. A., Niazi, A., & O’Kelly, B. C. (2015). Improving sand with microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), 217-230. https://doi.org/10.1680/grim.14.00001

[33]

Sharma, M., Satyam, N., & Reddy, K. R. (2021). Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 705-716. https://doi.org/10.1016/j.jrmge.2020.11.006

[34]

Sondi, I., Sˇkapin, S. D., & Salopek-Sondi, B. (2008). Biomimetic precipitation of nanostructured colloidal calcite particles by enzymecatalyzed reaction in the presence of magnesium ions. Crystal Growth & Design, 8(2), 435-441. https://doi.org/10.1021/cg070195n

[35]

Soundara, B., Kulanthaivel, P., Nithipandian, S., & Soundaryan, V. (2020). A critical review on soil stabilization using bacteria. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/955/1/012065

[36]

Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6

[37]

van Paassen, L. A. (2009). Biogrout, ground improvement by microbial induced carbonate precipitation (Ph.D. thesis). Delft, The Netherlands: Delft University of Technology.

[38]

van Paassen, L. A. (2011). Bio-mediated ground improvement: From laboratory experiment to pilot applications. Geo-Frontiers Congress, 2011, 4099-4108. https://doi.org/10.1061/41165(397)419

[39]

Wang, H., Miao, L., Sun, X., Wu, L., & Fan, G. (2022). Experimental study of enzyme-induced carbonate precipitation for high temperature applications by controlling enzyme activity. Geomicrobiology Journal, 39(6), 502-514. https://doi.org/10.1080/01490451.2022.2045649

[40]

Wang, H., Sun, X., Miao, L., Cao, Z., Fan, G., & Wu, L. (2022). Induced CaCO3 mineral formation based on enzymatical calcification for bioremediation under different pressure conditions. Journal of Petroleum Science and Engineering, 216, Article 110787. https://doi.org/10.1016/j.petrol.2022.110787

[41]

Wang, H., Miao, L., Sun, X., Wu, L., Fan, G., & Zhang, J. (2023). The use of N-(N-butyl)- thiophosphoric triamide to improve the efficiency of enzyme induced carbonate precipitation at high temperature. Acta Geotechnica, 1-19. https://doi.org/10.1007/s11440-023-01864-x

[42]

Wang, K. D., Wu, S. F., & Chu, J. (2023). Mitigation of soil liquefaction using microbial technology: An overview. Biogeotechnics, 1(1), Article 100005. https://doi.org/10.1016/j.bgtech.2023.100005

[43]

Wang, L., Cheng, W. C., Xue, Z. F., Xie, Y. X., & Lv, X. J. (2023). Feasibility study of applying electrokinetic technology coupled with enzyme-induced carbonate precipitation treatment to Cu-and Pb-contaminated loess remediation. Journal of Cleaner Production, 401, Article 136734. https://doi.org/10.1016/j.jclepro.2023.136734

[44]

Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. https://doi.org/10.1080/01490450701436505

[45]

Wu, C. Z., Chu, J., Cheng, L., & Wu, S. F. (2019). Biogrouting of aggregates using premixed injection method with or without pH adjustment. Journal of Materials in Civil Engineering, 31(9), Article 06019008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002874

[46]

Xiao, P., Liu, H. L., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on the cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849-1862. https://doi.org/10.1139/cgj-2018-0573

[47]

Xiao, Y., He, X., Evans, T. M., Stuedlein, A. W., & Liu, H. L. (2019). Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), Article 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108

[48]

Xiao, Y., Wang, Y., Desai, C. S., Jiang, X., & Liu, H. (2019). Strength and deformation responses of biocemented sands using a temperature-controlled method. International Journal of Geomechanics, 19(11), Article 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497

[49]

Xiao, P., Liu, H., Zhang, Y., Jiang, X., Li, C., Chu, J., & Xiao, Y. (2021). Dynamic strength of temperature-controlled MICP-treated calcareous sand. Chinese Journal of Geotechnical Engineering, 43(3), 511-519. https://doi.org/10.11779/CJGE202103014

[50]

Xiao, Y., Wang, Y., Wang, S., Matthew Evans, T., Stuedlein, A. W., Chu, J., Zhao, C., Wu, H., & Liu, H. (2021). Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica, 16(5), 1417-1427. https://doi.org/10.1007/s11440-020-01122-4

[51]

Xie, D., Zhang, R., & Wang, J. (2023). The influence of environmental factors and precipitation precursors on enzyme-induced carbonate precipitation (EICP) process and its application on modification of recycled concrete aggregates. Journal of Cleaner Production, 395, Article 136444. https://doi.org/10.1016/j.jclepro.2023.136444

[52]

Xu, K., Huang, M., Zhen, J., Xu, C., & Cui, M. (2023). Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct. Journal of Rock Mechanics and Geotechnical Engineering, 15(4), 1011-1022. https://doi.org/10.1016/j.jrmge.2022.06.012

[53]

Xu, W., Zheng, J., Chu, J., Zhang, R., Cui, M., Lai, H., & Zeng, C. (2021). New method for using N-(N-butyl)-thiophosphoric triamide to improve the effect of microbial induced carbonate precipitation. Construction and Building Materials, 313, Article 125490. https://doi.org/10.1016/j.conbuildmat.2021.125490

[54]

Yang, Y., Chu, J., Liu, H., & Cheng, L. (2023). Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method. Acta Geotechnica, 18(1), 413-428. https://doi.org/10.1007/s11440-022-01576-8

[55]

Yang, Y., Chu, J., Xiao, Y., Liu, H. L., & Cheng, L. (2019). Seepage control in sand using bioslurry. Construction and Building Materials, 212, 342-349. https://doi.org/10.1016/j.conbuildmat.2019.03.313

[56]

Zhang, J. W., Yin, Y., Shi, W. P., Bian, H. L., Shi, L., Wu, L. Y., Han, Z. G., Zheng, J. J., & He, X. (2023). Strength and uniformity of EICP-treated sand under multi-factor coupling effects. Biogeotechnics, 1(1), Article 100007. https://doi.org/10.1016/j.bgtech.2023.100007

[57]

Zhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial-induced carbonate precipitation (MICP) technology: A review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9), 229. https://doi.org/10.1007/s12665-023-10899-y

[58]

Zomorodian, S. M. A., Nikbakht, S., Ghaffari, H., & O’Kelly, B. C. (2023). Enzymatic-induced calcite precipitation (EICP) method for improving hydraulic erosion resistance of surface sand layer: A laboratory investigation. Sustainability, 15(6), 5567. https://doi.org/10.3390/su15065567

AI Summary AI Mindmap
PDF (2925KB)

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/