A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & excavation strategies

Wengang Zhang , Jiaying Xiang , Ruijie Huang , Hanlong Liu

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) : 100025

PDF (7541KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (3) :100025 DOI: 10.1016/j.bgtech.2023.100025
Review article
research-article

A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & excavation strategies

Author information +
History +
PDF (7541KB)

Abstract

As urbanization progresses, the demand for high-rise buildings and underground spaces is growing, and the need for firm geotechnical construction materials, efficient excavation methods, accurate testing instruments, and innovative geotechnical engineering theories and technologies is increasing. By investigating the phenomena of strengthening and toughening in nature, hydrophobic and ice-phobic, friction anisotropy and drilling as well as excavation, etc, researchers have found that organisms have distinctive external morphology and organization. By imitating the external morphology, structural characteristics or movement mechanism of organisms, novel ideas, new principles, and innovative theories can be provided for the innovation and sustainable development of geotechnical engineering. This paper mainly expounds on the bio-inspired application in geotechnical engineering from three perspectives: geo-materials, geotechnical components, and drilling & excavation equipment, and lists typical application cases. In conclusion, this paper presents a summary and prospects of bio-inspired geotechnical engineering, offering fundamental insights for future research.

Keywords

Bio-inspiration / Geotechnical engineering / Bio-inspired materials / Bio-inspired component / Bio-inspired equipment

Cite this article

Download citation ▾
Wengang Zhang, Jiaying Xiang, Ruijie Huang, Hanlong Liu. A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & excavation strategies. Biogeotechnics, 2023, 1(3): 100025 DOI:10.1016/j.bgtech.2023.100025

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Hanlong Liu is the editor-in-chief for Biogeotechnics and was not involved in the editorial review or the decision to publish this article.

Acknowledgments

The work described in this paper was supported by Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-LZX0001), High-end Foreign Expert Introduction Program (No. G2022165004L). Special thanks also go to Prof. Ningning Zhang from RWTH Aachen University for his valuable guidance and assistance with the content and ideas of this paper. His guidance enabled the research objectives of this paper to be clearly defined and the methods to be rationally selected and applied. Throughout the research process, Prof. Ningning Zhang gave careful guidance and encouragement and provided useful suggestions and in-depth discussions on each part of the paper. We sincerely thank the above-mentioned fund and Prof. Zhang for their support and help.

References

[1]

Ahn, B. K., Das, S., Linstadt, R., Kaufman, Y., Martinez-Rodriguez, N. R., Mirshafian, R., Kesselman, E., Talmon, Y., Lipshutz, B. H., Israelachvili, J. N., & Waite, J. H. (2015). High-performance mussel-inspired adhesives of reduced complexity. Nature Communications, 6, 8663. https://doi.org/10.1038/ncomms9663

[2]

Ahn, T.-H., & Kishi, T. (2010). Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. Journal of Advanced Concrete Technology, 8(2), 171-186. https://doi.org/10.3151/jact.8.171

[3]

Alkalla, M., Pang, X., Pitcher, C., & Gao, Y. (2021). DROD: A hybrid biomimetic undulatory and reciprocatory drill: Quantitative analysis and numerical study. Acta Astronautica, 182, 131-143. https://doi.org/10.1016/j.actaastro.2021.02.007

[4]

Alkalla, M.G., Gao, Y., & Bouton, A. (2019). Customizable and optimized drill bits bio-inspired from wood-wasp ovipositor morphology for extraterrestrial surfaces. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 430-435). 〈https://doi.org/10.1109/AIM.2019.8868816〉.

[5]

Anon (1977). Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London. Series B. Biological Sciences, 196( 1125), 443-463. https://doi.org/10.1098/rspb.1977.0050

[6]

Anon (2006). The functioning root system. Plant Roots. John Wiley & Sons, Ltd.80-130. https://doi.org/10.1002/9780470995563.ch4

[7]

Astley, H. C., Mendelson, J. R., III, Dai, J., Gong, C., Chong, B., Rieser, J. M., Schiebel, P. E., Sharpe, S. S., Hatton, R. L., & Choset, H. (2020). Surprising simplicities and syntheses in limbless self-propulsion in sand. Journal of Experimental Biology, 223(5), jeb103564.

[8]

Barley, K. P. (1963). Influence of soil strength of growth of roots. Soil Science, 96(3), 175. 〈https://journals.lww.com/soilsci/Citation/1963/09000/Influence_of_Soil_Strength_of_Growth_of_Roots.4.aspx〉.

[9]

Barthelat, F. (2007). Biomimetics for next generation materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365( 1861), 2907-2919. https://doi.org/10.1098/rsta.2007.0006

[10]

Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8. https://doi.org/10.1007/s004250050096

[11]

Baumgartner, W., Fidler, F., Weth, A., Habbecke, M., Jakob, P., Butenweg, C., & Böhme, W. (2008). Investigating the locomotion of the sandfish in desert sand using NMR- imaging. PloS One, 3(10), Article e3309.

[12]

Becker, G. (1959). Biological investigations on marine borers in Berlin-Dahlem. Marine Boring and Fouling Organisms, 62-76.

[13]

Benz, M. J., Kovalev, A. E., & Gorb, S. N. (2012). Anisotropic frictional properties in snakes. In A. Lakhtakia, & R. J. MartinPalma (Vol. Eds.), Bioinspiration, Biomimetics, and Bioreplication 2012: Vol. 8339, (pp. 83390X-). Spie-Int Soc Optical Engineering. https://doi.org/10.1117/12.916972

[14]

Bhushan, B. (2009). Biomimetics: Lessons from nature-an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367( 1893), 1445-1486.

[15]

Birman, V., & Kardomateas, G. A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B-Engineering, 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027

[16]

Boinovich, L. B., Emelyanenko, A. M., Ivanov, V. K., & Pashinin, A. S. (2013). Durable Icephobic Coating for Stainless Steel. Acs Applied Materials & Interfaces, 5(7), 2549-2554. https://doi.org/10.1021/am3031272

[17]

Bouligand, Y. (1972). Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell, 4(2), 189-217. https://doi.org/10.1016/S0040-8166(72)80042-9

[18]

Byrnes, G., & Jayne, B. C. (2010). Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors. Journal of Experimental Biology, 213(24), 4249-4256. https://doi.org/10.1242/jeb.047225

[19]

Calderón, A.A., Ugalde, J.C., Zagal, J.C., & Pérez-Arancibia, N.O. (2016). Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms. In Proceedings of the 2016 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 31-38).

[20]

Calusi, B., Tramacere, F., Gualtieri, S., Pugno, N. M., & Mazzolai, B. (2020). Plant root penetration and growth as a mechanical inclusion problem. International Journal of Non-Linear Mechanics, 120, Article 103344. https://doi.org/10.1016/j.ijnonlinmec.2019.103344

[21]

Cao, S. C., Liu, J., Zhu, L., Li, L., Dao, M., Lu, J., & Ritchie, R. O. (2018). Nature-Inspired Hierarchical Steels. Scientific Reports, 8(1), 5088. https://doi.org/10.1038/s41598-018-23358-7

[22]

Chen, Y., Martinez, A., & DeJong, J. (2022). DEM study of the alteration of the stress state in granular media around a bio-inspired probe. Canadian Geotechnical Journal, 59(10), 1691-1711. https://doi.org/10.1139/cgj-2021-0260

[23]

Cortes, D. D., & John, S. (2018). Earthworm-inspired soil penetration. Proceedings of Biomediated and Bioinspired Geotechnics ((B2G)) Conference.

[24]

Das, R., Babu, S. P. M., Visentin, F., Palagi, S., & Mazzolai, B. (2023). An earthworm-like modular soft robot for locomotion in multi-terrain environments. Scientific Reports, 13(1), 1571.

[25]

Deng, K., Huang, J., & Wang, H. (2015). Layout optimization of non-equidistant arrangement for thrust systems in shield machines. Automation in Construction, 49, 135-141. https://doi.org/10.1016/j.autcon.2014.10.006

[26]

Ding, Y., Sharpe, S. S., Masse, A., & Goldman, D. I. (2012). Mechanics of undulatory swimming in a frictional fluid. PLoS Computational Biology, 8(12), Article e1002810.

[27]

Dorgan, K. M., Law, C. J., & Rouse, G. W. (2013). Meandering worms: Mechanics of undulatory burrowing in muds. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20122948.

[28]

Dyson, A. S., & Rognon, P. G. (2014). Pull-out capacity of tree root inspired anchors in shallow granular soils. Géotechnique Letters, 4(4), 301-305. https://doi.org/10.1680/geolett.14.00061

[29]

Einhorn, T. A., & Gerstenfeld, L. C. (2015). Fracture healing: Mechanisms and interventions. Nature Reviews Rheumatology, 11(1), 1. https://doi.org/10.1038/nrrheum.2014.164

[30]

Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2(1), 152-161. https://doi.org/10.3762/bjnano.2.19

[31]

Evangelista, D., Hotton, S., & Dumais, J. (2011). The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). Journal of Experimental Biology, 214(4), 521-529.

[32]

Fara, P. (2006). Engineering fame: Isambard Kingdom Brunel. Endeavour, 30(3), 90-91. https://doi.org/10.1016/j.endeavour.2005.09.005

[33]

Flores-Vivian, I., Hejazi, V., Kozhukhova, M. I., Nosonovsky, M., & Sobolev, K. (2013). Self-assembling particle-siloxane coatings for superhydrophobic concrete. ACS Applied Materials & Interfaces, 5(24), 13284-13294. https://doi.org/10.1021/am404272v

[34]

Franks, N. R., Worley, A., Falkenberg, M., Sendova-Franks, A. B., & Christensen, K. (2019). Digging the optimum pit: Antlions, spirals and spontaneous stratification. Proceedings of the Royal Society B: Biological Sciences, 286(1899), 20190365. https://doi.org/10.1098/rspb.2019.0365

[35]

Gallager, S. M., Turner, R. D., & Berg, C. J., Jr (1981). Physiological aspects of wood consumption, growth, and reproduction in the shipworm Lyrodus pedicellatus Quatrefages (Bivalvia: Teredinidae). Journal of Experimental Marine Biology and Ecology, 52(1), 63-77.

[36]

Gao, Y., Ellery, A., Sweeting, M. N., & Vincent, J. (2007). Bioinspired drill for planetary sampling: literature survey, conceptual design, and feasibility study. Journal of Spacecraft and Rockets, 44(3), 703-709. https://doi.org/10.2514/1.23025

[37]

Gao, Y., Ellery, A., Jaddou, M., & Vincent, J. (2006). Deployable Wood Wasp Drill for Planetary Subsurface Sampling. 2006 IEEE Aerospace Conference, 1-8. https://doi.org/10.1109/AERO.2006.1655756

[38]

Ghazlan, A., Ngo, T., Van Le, T., Nguyen, T., & Remennikov, A. (2020). Blast performance of a bio-mimetic panel based on the structure of nacre - A numerical study. Composite Structures, 234, Article 111691. https://doi.org/10.1016/j.compstruct.2019.111691

[39]

Gilroy, S. (2008). Plant tropisms. Current Biology, 18(7), R275-R277. https://doi.org/10.1016/j.cub.2008.02.033

[40]

Gouache, T. P., Gao, Y., Coste, P., & Gourinat, Y. (2011). First experimental investigation of dual-reciprocating drilling in planetary regoliths: Proposition of penetration mechanics. Planetary and Space Science, 59(13), 1529-1541. https://doi.org/10.1016/j.pss.2011.06.019

[41]

Guo, H., Zhang, J., Wang, T., Li, Y., Hong, J., & Li, Y. (2017). Design and control of an inchworm-inspired soft robot with omega-arching locomotion. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4154-4159).

[42]

Han, Q., Shi, S., Liu, Z., Han, Z., Niu, S., Zhang, J., Qin, H., Sun, Y., & Wang, J. (2020). Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp. Composites Part B- Engineering, 191, Article 107976. https://doi.org/10.1016/j.compositesb.2020.107976

[43]

Hawkes, E. W., Blumenschein, L. H., Greer, J. D., & Okamura, A. M. (2017). A soft robot that navigates its environment through growth. Science Robotics, 2(8), eaan3028. https://doi.org/10.1126/scirobotics.aan3028

[44]

Hernandez, A. B., & Angelini, C. (2019). Wood traits and tidal exposure mediate shipworm infestation and biofouling in southeastern US estuaries. Ecological Engineering, 132, 1-12. https://doi.org/10.1016/j.ecoleng.2019.03.008

[45]

Hofman, A. H., van Hees, I. A., Yang, J., & Kamperman, M. (2018). Bioinspired underwater adhesives by using the supramolecular toolbox. Advanced Materials, 30(19), 1704640. https://doi.org/10.1002/adma.201704640

[46]

Huang, L., & Martinez, A. (2021). Load transfer anisotropy at snakeskin-inspired clay- structure interfaces. IFCEE, 2021, 119-129. https://doi.org/10.1061/9780784483428.013

[47]

Huang, S., & Tao, J. (2017). Penetrating in granular materials: Effects of penetrator dynamics. Geotechnical Frontiers, 2017, 604-613. https://doi.org/10.1061/9780784480441.063

[48]

Huang, S., & Tao, J. (2020). Modeling clam-inspired burrowing in dry sand using cavity expansion theory and DEM. Acta Geotechnica, 15(8), 2305-2326. https://doi.org/10.1007/s11440-020-00918-8

[49]

Huang, S., Mahabadi, N., & Tao, J. (2020). Impact of shell opening of a model razor clam on the evolution of force chains in granular media. In E. Kavazanjian, J. P. Hambleton, R. Makhnenko, & A. S. Budge (Eds.). Biogeotechnics (geo-Congress 2020) (pp. 272-281). Amer Soc Civil Engineers. 〈https://www.webofscience.com/wos/alldb/full-record/WOS:000565614400030〉.

[50]

Isaka, K., Tsumura, K., Watanabe, T., Toyama, W., Sugesawa, M., Yamada, Y., Yoshida, H., & Nakamura, T. (2019). Development of underwater drilling robot based on earthworm locomotion. IEEE Access, 7, 103127-103141.

[51]

Jenkins, C. L., Meredith, H. J., & Wilker, J. J. (2013). Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer. Acs Applied Materials & Interfaces, 5(11), 5091-5096. https://doi.org/10.1021/am4009538

[52]

Jung, W., Kim, W., & Kim, H.-Y. (2014). Self-burial mechanics of hygroscopically responsive awns. Oxford University Press.

[53]

Jung, W., Choi, S. M., Kim, W., & Kim, H.-Y. (2017). Reduction of granular drag inspired by self-burrowing rotary seeds. Physics of Fluids, 29(4), Article 041702.

[54]

Kalfas, I. H. (2001). Principles of bone healing. Neurosurgical Focus, 10(4), Article E1. 〈https://www.webofscience.com/wos/alldb/full-record/MEDLINE:16732625〉.

[55]

Kanu, E. N., Daltorio, K. A., Quinn, R. D., & Chiel, H. J. (2015). Correlating kinetics and kinematics of earthworm peristaltic locomotion. Biomimetic and Biohybrid Systems: 4th International Conference, Living Machines 2015, Barcelona, Spain, July 28-31, 2015, Proceedings, 4, 92-96.

[56]

Kazemi, A., Van de Riet, K., & Curet, O. M. (2017). Hydrodynamics of mangrove-type root models: The effect of porosity, spacing ratio and flexibility. Bioinspiration & Biomimetics, 12(5), Article 056003. https://doi.org/10.1088/1748-3190/aa7ccf

[57]

Kazemi, A., Castillo, L., & Curet, O. M. (2021). Mangrove roots model suggest an optimal porosity to prevent erosion. Scientific Reports, 11(1), 9969. https://doi.org/10.1038/s41598-021-88119-5

[58]

Li, L., Sun, S., Wang, J., Yang, W., Song, S., & Fang, Z. (2020). Experimental study of the precursor information of the water inrush in shield tunnels due to the proximity of a water-filled cave. International Journal of Rock Mechanics and Mining Sciences, 130, Article 104320. https://doi.org/10.1016/j.ijrmms.2020.104320/j.ijrmms.2020.104320

[59]

Li, W., Dong, B., Yang, Z., Xu, J., Chen, Q., Li, H., Xing, F., & Jiang, Z. (2018). Recent advances in intrinsic self-healing cementitious materials. Advanced Materials, 30(17), 1705679. https://doi.org/10.1002/adma.201705679

[60]

Li, X., van Paassen, L., & Tao, J. (2022a). Investigation of using mangrove-inspired skirt pile group as a scour countermeasure. Ocean Engineering, 266, Article 113133. https://doi.org/10.1016/j.oceaneng.2022.113133

[61]

Li, X., Tao, J., & van Paassen, L. (2022b). Numerical simulations of mangrove-inspired sacrificial pile group for scour mitigation. Geo-Congress, 2022, 385-394. https://doi.org/10.1061/9780784484050.040

[62]

Li, X. R., Gao, Y. H., Su, J. Q., Jia, R. L., & Zhang, Z. S. (2014). Ants mediate soil water in arid desert ecosystems: Mitigating rainfall interception induced by biological soil crusts? Applied Soil Ecology, 78, 57-64. https://doi.org/10.1016/j.apsoil.2014.02.009

[63]

Li, Zhijun, Dong, Zhi, Chen, Mo, & Lu, Song (2019). Application prospect and prospect of bionic superhydrophobic materials in seepage prevention of earth-rock dams in cold regions. HydroScience and Cold Zone Engineering, 2(4), 44-47. 〈 https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=SLTD201904012&v=〉.

[64]

Lillywhite, H. B. (2014). How snakes work: Structure, function and behavior of the world’s snakes. Oxford University Press.

[65]

Liu, H., Chu, J., & Kavazanjian, E. (2023). Biogeotechnics: A new frontier in geotechnical engineering for sustainability. BiogeotechnicsArticle 100001.

[66]

Liu, Q., Chen, J., Li, Y., & Shi, G. (2016). High-performance strain sensors with fish-scale- like graphene-sensing layers for full-range detection of human motions. Acs Nano, 10(8), 7901-7906. https://doi.org/10.1021/acsnano.6b03813Lizzi

[67]

Lizzi, F. (1993). RETRACTED CHAPTER:‘Pali radice’ structures. In S. Thorburn, & G. S. Littlejohn (Eds.). Retracted book: Underpinning and retention (pp. 84-156). US: Springer. https://doi.org/10.1007/978-1-4899-7094-7_4

[68]

Luo, D., Maheshwari, A., Danielescu, A., Li, J., Yang, Y., Tao, Y., Sun, L., Patel, D. K., Wang, G., Yang, S., Zhang, T., & Yao, L. (2023). Autonomous self-burying seed carriers for aerial seeding. Nature, 614(7948), 7948. https://doi.org/10.1038/s41586-022-05656-3

[69]

Lynch, J. P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55(5), 493. https://doi.org/10.1071/BT0611

[70]

Maladen, R. D., Ding, Y., Li, C., & Goldman, D. I. (2009). Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard. Science, 325(5938), 314-318.

[71]

Maladen, R. D., Ding, Y., Umbanhowar, P. B., & Goldman, D. I. (2011b). Undulatory swimming in sand: Experimental and simulation studies of a robotic sandfish. The International Journal of Robotics Research, 30(7), 793-805. https://doi.org/10.1177/0278364911402406

[72]

Maladen, R. D., Ding, Y., Umbanhowar, P. B., Kamor, A., & Goldman, D. I. (2011a). Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. Journal of The Royal Society Interface, 8(62), 1332-1345.

[73]

Mallett, S. D., Matsumura, S., & David Frost, J. (2018). Additive manufacturing and computed tomography of bio-inspired anchorage systems. Géotechnique Letters, 8(3), 219-225. https://doi.org/10.1680/jgele.18.00090

[74]

Mann, R. (1984). Nutrition in the Teredinidae. Marine Biodeterioration: An Interdisciplinary Study Ed. JD Costlow and RC Tipper. 24-29.

[75]

Martinez, A. (2021). Skin Friction Directionality in Monotonically- and Cyclically-Loaded Bio-inspired Piles in Sand. DFI Journal The Journal of the Deep Foundations Institute, 15(1), https://doi.org/10.37308/DFIJnl.20200831.222

[76]

Martinez, A., & Palumbo, S. (2018). Anisotropic shear behavior of soil-structure interfaces: Bio-inspiration from snake skin. IFCEE94-104. https://doi.org/10.1061/9780784481592.010

[77]

Martinez, A., DeJong, J. T., Jaeger, R. A., & Khosravi, A. (2020). Evaluation of self-penetration potential of a bio-inspired site characterization probe by cavity expansion analysis. Canadian Geotechnical Journal, 57(5), 706-716. https://doi.org/10.1139/cgj-2018-0864/cgj-2018-0864

[78]

Martinez, A., O’Hara, K.B., Sinha, S.K., Wilson, D., & Ziotopoulou, K. (n.d.). Monotonic and Cyclic Centrifuge Testing of Snake Skin-Inspired Piles.

[79]

Martinez, A., Dejong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., Bandini, P., Baser, T., Borela, R., Boulanger, R., Burrall, M., Chen, Y., Collins, C., Cortes, D., Dai, S., DeJong, T., Del Dottore, E., Dorgan, K., Fragaszy, R., & Zheng, J. (2022). Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges. Géotechnique, 72(8), 687-705. https://doi.org/10.1680/jgeot.20.P.170

[80]

Martinez, T., Bertron, A., Escadeillas, G., & Ringot, E. (2014). Algal growth inhibition on cement mortar: Efficiency of water repellent and photocatalytic treatments under UV/VIS illumination. International Biodeterioration & Biodegradation, 89, 115-125. https://doi.org/10.1016/j.ibiod.2014.01.018

[81]

Marvi, H., & Hu, D. L. (2012). Friction enhancement in concertina locomotion of snakes. Journal of the Royal Society Interface, 9(76), 3067-3080. https://doi.org/10.1098/rsif.2012.0132

[82]

Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R. L., Mendelson, J. R., 3rd, Choset, H., Hu, D. L., & Goldman, D. I. (2014). Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 346(6206), 224-229. https://doi.org/10.1126/science.1255718

[83]

Mazzolai, B., Tramacere, F., Fiorello, I., & Margheri, L. (2020). The bio-engineering approach for plant investigations and growing robots. A mini-review. Frontiers in Robotics and AI, 7, Article 573014. https://doi.org/10.3389/frobt.2020.573014

[84]

Migliaccio, F., Tassone, P., & Fortunati, A. (2013). Circumnutation as an autonomous root movement in plants. American Journal of Botany, 100(1), 4-13. https://doi.org/10.3732/ajb.1200314

[85]

Mishra, A. K., Tramacere, F., Guarino, R., Pugno, N. M., & Mazzolai, B. (2018). A study on plant root apex morphology as a model for soft robots moving in soil. PLoS One, 13(6), Article e0197411. https://doi.org/10.1371/journal.pone.0197411

[86]

Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., & Watanabe, T. (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16(13), 5754-5760. https://doi.org/10.1021/la991660o

[87]

Naclerio, N. D., Karsai, A., Murray-Cooper, M., Ozkan-Aydin, Y., Aydin, E., Goldman, D. I., & Hawkes, E. W. (2021). Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Science Robotics, 6(55), eabe2922. https://doi.org/10.1126/scirobotics.abe2922

[88]

Naziri, S., Cortes, D. D., Ridgeway, C., Ibarra, S., Provenghi, K., & Castelo, J. A. (2021). Bioinspired regolith penetration probe for Lunar exploration. ASCEND, 2021, 4156.

[89]

Niiyama, R., Matsushita, K., Ikeda, M., Or, K., & Kuniyoshi, Y. (2022). A 3D printed hydrostatic skeleton for an earthworm-inspired soft burrowing robot. Soft Matter, 18(41), 7990-7997.

[90]

O’Hara, K. B., & Martinez, A. (2020). Monotonic and cyclic frictional resistance directionality in snakeskin-inspired surfaces and piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002368/(ASCE)GT.1943-5606.0002368

[91]

Özbay, E., Şahmaran, M., Lachemi, M., & Yücel, H. (2013). Self-Healing of microcracks in high-volume fly-ash-incorporated engineered cementitious composites. ACI Materials Journal, 110, 33-43.

[92]

Ozkan-Aydin, Y., Liu, B., Ferrero, A. C., Seidel, M., Hammond F. L., III, & Goldman, D. I. (2021). Lateral undulation aids biological and robotic earthworm anchoring and locomotion. BioRxiv.

[93]

Pang, B., Zhou, Z., Hou, P., Du, P., Zhang, L., & Xu, H. (2016). Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Construction and Building Materials, 107, 191-202. https://doi.org/10.1016/j.conbuildmat.2015.12.191

[94]

Pesante, G., Sabbadin, F., Elias, L., Steele-King, C., Shipway, J. R., Dowle, A. A., Li, Y., Busse- Wicher, M., Dupree, P., & Besser, K. (2021). Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biology, 19, 1-18.

[95]

Plaut, R. H. (2015). Mathematical model of inchworm locomotion. International Journal of Non-Linear Mechanics, 76, 56-63.

[96]

Popova, L., van Dusschoten, D., Nagel, K. A., Fiorani, F., & Mazzolai, B. (2016). Plant root tortuosity: An indicator of root path formation in soil with different composition and density. Annals of Botany, 118(4), 685-698. https://doi.org/10.1093/aob/mcw057

[97]

Qin, C., Shi, G., Tao, J., Yu, H., Jin, Y., Xiao, D., Zhang, Z., & Liu, C. (2022). An adaptive hierarchical decomposition-based method for multi-step cutterhead torque forecast of shield machine. Mechanical Systems and Signal Processing, 175, Article 109148.

[98]

Rao, M. V., Pachu, A. V., & Balaji, M. (2014). Interesting shipworm (Mollusca: Bivalvia: Teredinidae) records from India. Check List, 10(3), 609-614. https://doi.org/10.15560/10.3.609

[99]

Sadeghi, A., Tonazzini, A., Popova, L., & Mazzolai, B. (2014). A novel growing device inspired by plant root soil penetration behaviors. PLoS One, 9(2), Article e90139. https://doi.org/10.1371/journal.pone.0090139

[100]

Sadeghi, A., Mondini, A., Del Dottore, E., Mattoli, V., Beccai, L., Taccola, S., Lucarotti, C., Totaro, M., & Mazzolai, B. (2017). A plant-inspired robot with soft differential bending capabilities. Bioinspiration & Biomimetics, 12(1), Article 015001. https://doi.org/10.1088/1748-3190/12/1/015001

[101]

Sadeghi, A., Tonazzini, A., Popova, L., & Mazzolai, B. (2013). Robotic mechanism for soil penetration inspired by plant root. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (pp. 3457-3462). 〈https://doi.org/10.1109/ICRA.2013.6631060〉.

[102]

Sahmaran, M., Yildirim, G., & Erdem, T. K. (2013). Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement and Concrete Composites, 35(1), 89-101. https://doi.org/10.1016/j.cemconcomp.2012.08.013

[103]

Sangadji, S., & Schlangen, E. (2013). Mimicking bone healing process to self repair concrete structure novel approach using porous network concrete. Procedia Engineering, 54, 315-326. https://doi.org/10.1016/j.proeng.2013.03.029

[104]

Seeman, E. (2009). Bone modeling and remodeling. Critical Reviews™ in Eukaryotic Gene Expression, 19(3), https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i3.40

[105]

Sharpe, S. S., Kuckuk, R., & Goldman, D. I. (2015a). Controlled preparation of wet granular media reveals limits to lizard burial ability. Physical Biology, 12(4), Article 046009.

[106]

Sharpe, S. S., Koehler, S. A., Kuckuk, R. M., Serrano, M., Vela, P. A., Mendelson J., III, & Goldman, D. I. (2015b). Locomotor benefits of being a slender and slick sand swimmer. Journal of Experimental Biology, 218(3), 440-450.

[107]

Shrestha, S., Marathe, S., & Ravichandran, N. (2022). Prospective of biomimicking tree root anchorage mechanism to develop an innovative foundation system. Geo- Congress, 2022, 123-133. https://doi.org/10.1061/9780784484029.012

[108]

Stachew, E., Houette, T., & Gruber, P. (2021). Root systems research for bioinspired resilient design: A concept framework for foundation and coastal engineering. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.548444

[109]

Stewart, R. J., Ransom, T. C., & Hlady, V. (2011). Natural underwater adhesives. Journal of Polymer Science Part B: Polymer Physics, 49(11), 757-771. https://doi.org/10.1002/polb.22256

[110]

Suksangpanya, N., Yaraghi, N. A., Kisailus, D., & Zavattieri, P. (2017). Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 76, 38-57. https://doi.org/10.1016/j.jmbbm.2017.06.010

[111]

Sun, Y.-Y., Yu, Z.-W., & Wang, Z.-G. (2016). Bioinspired design of building materials for blast and ballistic protection. Advances in Civil Engineering, 2016, 5840176. https://doi.org/10.1155/2016/5840176

[112]

Tao, J., Huang, S., & Tang, Y. (2020). SBOR: A minimalistic soft self-burrowing-out robot inspired by razor clams. Bioinspiration & Biomimetics, 15(5), Article 055003. https://doi.org/10.1088/1748-3190/ab8754

[113]

Taylor, J. R. A., & Patek, S. N. (2010). Ritualized fighting and biological armor: The impact mechanics of the mantis shrimp’s telson. Journal of Experimental Biology, 213(20), 3496-3504. https://doi.org/10.1242/jeb.047233

[114]

The dynamics of burrowing in Ensis (Bivalvia) (1967). Proceedings of the Royal Society of London. Series B. Biological Sciences. https://doi.org/10.1098/rspb.1967.0007

[115]

Tschinkel, W. R. (2010). Methods for casting subterranean ant nests. Journal of Insect Science, 10(1), 88. https://doi.org/10.1673/031.010.8801

[116]

Vincent, J. F. V., & King, M. J. (1995). The mechanism of drilling by wood wasp ovipositors. Biomimetics (USA).

[117]

Waite, J. H. (2002). Adhesion a la Moule. Integrative and Comparative Biology, 42(6), 1172-1180. https://doi.org/10.1093/icb/42.6.1172

[118]

Waite, J. H. (2017). Mussel adhesion - essential footwork. Journal of Experimental Biology, 220(4), 517-530. https://doi.org/10.1242/jeb.134056

[119]

Walther, A., Bjurhager, I., Malho, J.-M., Pere, J., Ruokolainen, J., Berglund, L. A., & Ikkala, O. (2010). Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Letters, 10(8), 2742-2748. https://doi.org/10.1021/nl1003224

[120]

Wang, J., Cheng, Q., & Tang, Z. (2012). Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 41(3), 1111-1129. https://doi.org/10.1039/c1cs15106a

[121]

Wang, R. Z., Wen, H. B., Cui, F. Z., Zhang, H. B., & Li, H. D. (1995). Observations of damage morphologies in nacre during deformation and fracture. Journal of Materials Science, 30(9), 2299-2304. https://doi.org/10.1007/BF01184577

[122]

Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2001). Deformation mechanisms in nacre. Journal of Materials Research, 16(9), 2485-2493. https://doi.org/10.1557/JMR.2001.0340

[123]

Wang, W., Lee, J.-Y., Rodrigue, H., Song, S.-H., Chu, W.-S., & Ahn, S.-H. (2014). Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspiration & Biomimetics, 9(4), Article 046006.

[124]

Wang, X. F., Yang, Z. H., Fang, C., Han, N. X., Zhu, G. M., Tang, J. N., & Xing, F. (2019). Evaluation of the mechanical performance recovery of self-healing cementitious materials - its methods and future development: A review. Construction and Building Materials, 212, 400-421. https://doi.org/10.1016/j.conbuildmat.2019.03.117

[125]

Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23-36. https://doi.org/10.1038/nmat4089

[126]

Wei, Z., & Xu, X. (2021). Gradient design of bio-inspired nacre-like composites for improved impact resistance. Composites Part B: Engineering, 215, Article 108830. https://doi.org/10.1016/j.compositesb.2021.108830

[127]

Winter, A. G., Deits, R. L. H., & Hosoi, A. E. (2012). Localized fluidization burrowing mechanics of Ensis directus. Journal of Experimental Biology, 215(12), 2072-2080. https://doi.org/10.1242/jeb.058172

[128]

Winter A. G., V, Deits, R. L. H., Dorsch, D. S., Slocum, A. H., & Hosoi, A. E. (2014). Razor clam to RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation. Bioinspiration & Biomimetics, 9(3), Article 036009. https://doi.org/10.1088/1748-3182/9/3/036009

[129]

Xiang Lv, Wei Liu, Dong Li, & Zhao,Chen (2019). Superhydrophobic civil engineering materials: A review from recent developments. Coatings, 9(11), 753. https://doi.org/10.3390/coatings9110753

[130]

Xu, L., Liao, Q., Liu, Y., Rosselló M. P., & Wang, L. (2019). “Ant community”: Community complex sustainable design based on design bionics—Case study of the Can Batlló community in Barcelona. IOP Conference Series: Earth and Environmental Science, 376(1), Article 012038. https://doi.org/10.1088/1755-1315/376/1/012038

[131]

Yang, G., Zhou, W., Qu, W., Yao, W., Zhu, P., & Xu, J. (2022). A review of ant nests and their implications for architecture. Buildings, 12(12), 12. https://doi.org/10.3390/buildings12122225

[132]

Yang, J., Gu, D., Lin, K., Yang, Y., & Ma, C. (2019). Optimization of bio-inspired bi- directionally corrugated panel impact-resistance structures: Numerical simulation and selective laser melting process. Journal of the Mechanical Behavior of Biomedical Materials, 91, 59-67.

[133]

Yang, X., Ma, J., Shi, Y., Sun, Y., & Yang, J. (2017). Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Materials & Design, 135, 275-290. https://doi.org/10.1016/j.matdes.2017.09.040

[134]

Yıldırım, G., Keskin, Ö. K., Keskin, S. B., Şahmaran, M., & Lachemi, M. (2015). A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties. Construction and Building Materials, 101, 10-21. https://doi.org/10.1016/j.conbuildmat.2015.10.018

[135]

Zachariah, N., Das, A., Murthy, T. G., & Borges, R. M. (2017). Building mud castles: A perspective from brick-laying termites. Scientific Reports, 7(1), 4692. https://doi.org/10.1038/s41598-017-04295-3

[136]

Zeng, H., Hwang, D. S., Israelachvili, J. N., & Waite, J. H. (2010). Strong reversible Fe3+- mediated bridging between dopa-containing protein films in water. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12850-12853. https://doi.org/10.1073/pnas.1007416107

[137]

Zhang, N., Chen, Y., Martinez, A., & Fuentes, R. (2023). DEM simulation of a bio-inspired self-burrowing probe in granular materials. Geo-Congress, 2023, 142-150. https://doi.org/10.1061/9780784484692.015

[138]

Zhang, Y., Paris, O., Terrill, N. J., & Gupta, H. S. (2016). Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour. Scientific Reports, 6(1), 1. https://doi.org/10.1038/srep26249

[139]

Zhao, Y., & Dai, S. (2023). Challenges of rock drilling and opportunities from bio-boring. BiogeotechnicsArticle 100009. https://doi.org/10.1016/j.bgtech.2023.100009

[140]

Zhao, Y., Liu, Y., Liu, Q., Guo, W., Yang, L., & Ge, D. (2018). Icephobicity studies of superhydrophobic coatings on concrete via spray method. Materials Letters, 233, 263-266. https://doi.org/10.1016/j.matlet.2018.09.008

[141]

Zhong, W., Liu, H., Wang, Q., Zhang, W., Li, Y., Ding, X., & Chen, L. (2021). Investigation of the penetration characteristics of snake skin-inspired pile using DEM. Acta Geotechnica, 16(6), 1849-1865. https://doi.org/10.1007/s11440-020-01132-2

[142]

Zhou, C., Xu, H., Ding, L., Wei, L., & Zhou, Y. (2019). Dynamic prediction for attitude and position in shield tunneling: A deep learning method. Automation in Construction, 105, Article 102840. https://doi.org/10.1016/j.autcon.2019.102840

[143]

Zhou, D., Wang, R., Tyrer, M., Wong, H., & Cheeseman, C. (2017). Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 168, 1180-1192. https://doi.org/10.1016/j.jclepro.2017.09.098/j.jclepro.2017.09.098

[144]

Zimmermann, E. A., Gludovatz, B., Schaible, E., Dave, N. K. N., Yang, W., Meyers, M. A., & Ritchie, R. O. (2013). Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nature Communications, 4, 2634. https://doi.org/10.1038/ncomms3634

[145]

Zong, Z., Zheng, P., Deng, Z., Zhang, W., & Wang, L., Bearing capacity characteristics of bionic teeth root pile based on transparent soil model testing technique. Journal of Civil and Environmental Engineering, 1-10. Retrieved 7 May 2023, from 〈https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD67Ue63OlzDTMBeSbo198QUKgqXn1u-c-5lqtK3xlz2bq5VZvWOZTlqG&uniplatform=NZKPT〉.

AI Summary AI Mindmap
PDF (7541KB)

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/