Challenges of rock drilling and opportunities from bio-boring

Yumeng Zhao , Sheng Dai

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100009

PDF (2429KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100009 DOI: 10.1016/j.bgtech.2023.100009
Review article
research-article

Challenges of rock drilling and opportunities from bio-boring

Author information +
History +
PDF (2429KB)

Abstract

Drilling plays a significant role in the history of human civilization. The exploration of greater depths, extreme environments, or hazardous areas calls for more energy-efficient and high levels of autonomous drilling technologies with reduced cost and improved safety. Meanwhile, nature presents numerous biological boring examples that can be a source of inspiration to renovate our current drilling technologies. This paper reviews both man-made and biological drilling strategies and quantifies their performance by the dimensionless specific drilling energy and the rate of penetration. The results highlight that rotary drilling (including tunnel boring machines) remains the most popular method for subsurface drilling due to its advanced technical status and fewer environmental concerns. For harder rocks, the specific energy of rotary drilling increases dramatically, while percussion drilling requires nearly the same if not lower specific energy but with compromised bit durability that can significantly slow down the drilling operation. Innovative drilling technologies developed and tested in the laboratory still demand improved energy efficiency and penetration rate to be competitive. Bio-boring by natural organisms mostly outperforms man-made drilling technologies in terms of energy efficiency, penetration rate, or both. Studying the underlying mechanisms of bio-boring and translating such knowledge into developing innovative drilling technologies are of significance to subsurface construction and exploration.

Keywords

Rock drilling / Bio-inspiration / Subsurface / Resources

Cite this article

Download citation ▾
Yumeng Zhao, Sheng Dai. Challenges of rock drilling and opportunities from bio-boring. Biogeotechnics, 2023, 1(1): 100009 DOI:10.1016/j.bgtech.2023.100009

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This material is based upon work supported by the National Science Foundation Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (EEC-1449501). Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF.

References

[1]

A.J. Gwinnett, L. Gorelick, BEADS:, J. Soc. A brief history of drills and drilling, Bead Res. 10 (1) (1998) 49-56.

[2]

J.M. Goggin, A history of technology, volume i: From early times to fall of ancient empires,in:Charles Singer (Ed.), ej holmyard and ar hall, assisted by e. jaffe, rhg thomson and jm donaldson, Oxford university press, Oxford, 1954lv+ 827 pp., frontis.(in color), 570 figs., 36 pis., tables, maps. 26.90., American Antiquity 25(1) (1959) 130-132.

[3]

J.W. Delleur, The Handbook of Groundwater Engineering, CRC Press, 2006.

[4]

C. Treadway, Percussion and down-the-hole hammer drilling: yesterday and today, Water Well J. 51 (7) (1997) 55-59.

[5]

Y. Bar-Cohen, K. Zacny, Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets, John Wiley & Sons, 2009.

[6]

R. Blombery, C. Perrot, P. Robinson, Abrasive wear of tungsten carbide-cobalt composites. i. wear mechanisms, Mater. Sci. Eng. 13 (2) (1974) 93-100.

[7]

J. Larsen-Basse, C. Perrott, P. Robinson, Abrasive wear of tungsten carbide—cobalt composites i. rotary drilling tests, Mater. Sci. Eng. 13 (2) (1974) 83-91.

[8]

J. Gu, K. Huang, Role of cobalt of polycrystalline diamond compact (pdc) in drilling process, Diam. Relat. Mater. 66 (2016) 98-101.

[9]

U. EIA, Trends in us oil and natural gas upstream costs, US Energy Information Administration (2016).

[10]

Q. Zhou, D. Gregory, S. Chen, W.C. Chew, Investigation on electromagnetic measurement ahead of drill-bit, in:IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), Vol. 4, IEEE, 2000, pp. 1745-1747.

[11]

M. Thiel, D. Omeragic, J. Seydoux, Enhancing the look-ahead-of-the-bit capabilities of deep-directional resistivity measurements while drilling, in: SPWLA 60th Annual Logging Symposium, OnePetro, 2019.

[12]

K.M. Dorgan, The biomechanics of burrowing and boring, J. Exp. Biol. 218 (2) (2015) 176-183.

[13]

B. Cribb, A. Rathmell, R. Charters, R. Rasch, H. Huang, I. Tibbetts, Structure, composition and properties of naturally occurring non-calcified crustacean cuticle, Arthropod Struct. Dev. 38 (3) (2009) 173-178.

[14]

S. Özbek, P.G. Balasubramanian, T.W. Holstein, Cnidocyst structure and the biomechanics of discharge, Toxicon 54 (8) (2009) 1038-1045.

[15]

S.N. Patek, W. Korff, R.L. Caldwell, Deadly strike mechanism of a mantis shrimp, Nature 428 (6985) (2004) 819-820.

[16]

S. Patek, R. Caldwell, Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp odontodactylus scyllarus, J. Exp. Biol. 208 (19) (2005) 3655-3664.

[17]

N.A. Yaraghi, N. Guarín-Zapata, L.K. Grunenfelder, E. Hintsala, S. Bhowmick, J.M. Hiller, M. Betts, E.L. Principe, J.-Y. Jung, L. Sheppard, et al., A sinusoidally architected helicoidal biocomposite, Adv. Mater. 28 (32) (2016) 6835-6844.

[18]

P.R. May, J.M. Fuster, J. Haber, A. Hirschman, Woodpecker drilling behavior: an endorsement of the rotational theory of impact brain injury, Arch. Neurol. 36 (6) (1979) 370-373.

[19]

L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi, Comparison of nano-indentation hardness to microhardness, Surf. Coat. Technol. 195 (2-3) (2005) 264-271.

[20]

N. Lee, M. Horstemeyer, H. Rhee, B. Nabors, J. Liao, L.N. Williams, Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak, J. R. Soc. Interface 11 (96) (2014) 20140274.

[21]

Y.I. Golovin, A.I. Tyurin, D.Y. Golovin, A.A. Samodurov, S.M. Matveev, M.A. Yunack, I.A. Vasyukova, O.V. Zakharova, V.V. Rodaev, A.A. Gusev, Relationship between thermal diffusivity and mechanical properties of wood, Materials 15 (2) (2022) 632.

[22]

W. Gindl, H. Gupta, T. Schöberl, H. Lichtenegger, P. Fratzl, Mechanical properties of spruce wood cell walls by nanoindentation, Appl. Phys. A 79 (2004) 2069-2073.

[23]

L. Kundanati, N. Gundiah, Biomechanics of substrate boring by fig wasps, J. Exp. Biol. 217 (11) (2014) 1946-1954.

[24]

U. Cerkvenik, B. Van de Straat, S.W. Gussekloo, J.L. Van Leeuwen, Mechanisms of ovipositor insertion and steering of a parasitic wasp, Proc. Natl. Acad. Sci. 114 (37) (2017) E7822-E7831.

[25]

M.S. Lehnert, K.E. Reiter, G.A. Smith, G. Kritsky, An augmented wood-penetrating structure: Cicada ovipositors enhanced with metals and other inorganic elements, Sci. Rep. 9 (1) (2019) 1-10.

[26]

M. Ramasubramanian, O. Barham, V. Swaminathan, Mechanics of a mosquito bite with applications to microneedle design, Bioinspiration Biomim. 3 (4) (2008) 046001.

[27]

X. Kong, C. Wu, Mosquito proboscis: an elegant biomicroelectromechanical system, Phys. Rev. E 82 (1) (2010) 011910.

[28]

D. Gurera, B. Bhushan, N. Kumar, Lessons from mosquitoes’ painless piercing, J. Mech. Behav. Biomed. Mater. 84 (2018) 178-187.

[29]

A.D. Li, K.B. Putra, L. Chen, J.S. Montgomery, A. Shih, Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement, Sci. Rep. 10 (1) (2020) 1-14.

[30]

M.L. Oyen, Handbook of Nanoindentation:With Biological Applications, CRC Press, 2019.

[31]

W.K. Cho, J.A. Ankrum, D. Guo, S.A. Chester, S.Y. Yang, A. Kashyap, G.A. Campbell, R.J. Wood, R.K. Rijal, R. Karnik, et al., Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal, Proc. Natl. Acad. Sci. 109 (52) (2012) 21289-21294.

[32]

S. Chou, R. Overfelt, M. Miller, Anisotropic mechanical behavior of keratin tissue from quill shells of north american porcupine (erethizon dorsatum), Mater. Sci. Eng.: A 557 (2012) 36-44.

[33]

A.D. Ansell, N.B. NAIR, Shell movements of a wood boring bivalve, Nature 216 (5115) (1967) 595.

[34]

I.N. Bolotov, O.V. Aksenova, T. Bakken, C.J. Glasby, M.Y. Gofarov, A.V. Kondakov, E.S. Konopleva, M. Lopes-Lima, A.A. Lyubas, Y. Wang, et al., Discovery of a silicate rock-boring organism and macrobioerosion in fresh water, Nat. Commun. 9 (1) (2018) 1-11.

[35]

X. Ye, Y. Liu, H. Xue, G. Li, J. Xing, Experimental study on nanomechanical properties of yunnan red-bed mudstone, Geofluids 2022 (2022).

[36]

J.C. Weaver, Q. Wang, A. Miserez, A. Tantuccio, R. Stromberg, K.N. Bozhilov, P. Maxwell, R. Nay, S.T. Heier, E. DiMasi, et al., Analysis of an ultra hard magnetic biomineral in chiton radular teeth, Mater. Today 13 (1-2) (2010) 42-52.

[37]

W. Krings, T. Faust, A. Kovalev, M.T. Neiber, M. Glaubrecht, S. Gorb, In slow motion: radula motion pattern and forces exerted to the substrate in the land snail cornu aspersum (mollusca, gastropoda) during feeding, R. Soc. Open Sci. 6 (7) (2019) 190222.

[38]

C. Andrews, R. Williams, Limpet erosion of chalk shore platforms in southeast england, Earth Surf. Process. Landf.: J. Br. Geomorphol. Res. Group 25 (12) (2000) 1371-1381.

[39]

I.N. Bolotov, A.V. Kondakov, G.S. Potapov, D.M. Palatov, N. Chan, Z. Lunn, G.V. Bovykina, Y.E. Chapurina, Y.S. Kolosova, E.A. Spitsyna, et al., Bioerosion of siliceous rocks driven by rock-boring freshwater insects, npj Mater. Degrad. 6 (1) (2022) 1-12.

[40]

C. Li, D. Wang, L. Kong, Mechanical response of the middle bakken rocks under triaxial compressive test and nanoindentation, Int. J. Rock. Mech. Min. Sci. 139 (2021) 104660.

[41]

S. Golubic, R.D. Perkins, K.J. Lukas, Boring microorganisms and microborings in carbonate substrates, The study of trace fossils, Springer, 1975, pp. 229-259.

[42]

V. Chazottes, T. LeCampion-Alsumard, M. Peyrot-Clausade, Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (moorea, french polynesia), Palaeogeogr., Palaeoclimatol., Palaeoecol. 113 (2-4) (1995) 189-198.

[43]

U. Matthes, S.J. Turner, D.W. Larson, Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria, Int. J. Plant Sci. 162 (2) (2001) 263-270.

[44]

F. Garcia-Pichel, Plausible mechanisms for the boring on carbonates by microbial phototrophs, Sediment. Geol. 185 (3-4) (2006) 205-213.

[45]

H. Furnes, N.R. Banerjee, K. Muehlenbachs, H. Staudigel, M. de Wit, Early life recorded in archean pillow lavas, Science 304 (5670) (2004) 578-581.

[46]

C.S. Cockell, A. Herrera, Why are some microorganisms boring? Trends Microbiol. 16 (3) (2008) 101-106.

[47]

M. Parke, H. Moore, The biology of balanus balanoides. ii. algal infection of the shell, J. Mar. Biol. Assoc. U. Kingd. 20 (1) (1935) 49-56.

[48]

J.W. Evans, Borers in the shell of the sea scallop, placopecten magellnnicus, Am. Zool. 9 (3) (1969) 775-782.

[49]

S. Okoshi, K. Okoshi, Microstructure of scallop [patinopecten yessoensis] and oyster [crassostrea gigas] shells infested with boring polydora, Bull. Jpn. Soc. Sci. Fish. (Jpn. ) (1993).

[50]

J.A. BlakeFamily spionidae grube, 1850, Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel, Vol. 6, Annelida Part 3- Poly 6 (1996) 169-171.

[51]

P. Hutchings, Role of Polychaetes in Bioerosion if Coral Substrates, Current developments in bioerosion, Springer, 2008, pp. 249-264.

[52]

N.D. Higgs, A.G. Glover, T.G. Dahlgren, C.T. Little, Bone-boring worms: characterizing the morphology, rate, and method of bioerosion by osedax mucofloris (annelida, siboglinidae), Biol. Bull. 221 (3) (2011) 307-316.

[53]

S. Righi, M. Savioli, D. Prevedelli, R. Simonini, D. Malferrari, Unravelling the ultrastructure and mineralogical composition of fireworm stinging bristles, Zoology 144 (2021) 125851.

[54]

M.E. Çinar, E. Dagli, Bioeroding (boring) polychaete species (annelida: Polychaeta) from the aegean sea (eastern mediterranean), J. Mar. Biol. Assoc. U. Kingd. 101 (2) (2021) 309-318.

[55]

J.M. Arnold, K.O. Arnold, Some aspects of hole-boring predation by Octopus vulgaris, Am. Zool. 9 (3) (1969) 991-996.

[56]

J. Wodinsky, Mechanism of hole boring in Octopus vulgaris, J. Gen. Psychol. 88 (2) (1973) 179-183.

[57]

M. Nixon, The salivary papilla of octopus as an accessory radula for drilling shells, J. Zool. 190 (1) (1980) 53-57.

[58]

V. Jaccarini, W. Bannister, H. Micallef, The pallial glands and rock boring in lithophaga lithophaga (lamellibranchia, mytilidae), J. Zool. 154 (4) (1968) 397-401.

[59]

F. Zapata, F.E. Goetz, S.A. Smith, M. Howison, S. Siebert, S.H. Church, S.M. Sanders, C.L. Ames, C.S. McFadden, S.C. France, et al., Phylogenomic analyses support traditional relationships within cnidaria, PloS One 10 (10) (2015) e0139068.

[60]

S. Van Wassenbergh, E.J. Ortlieb, M. Mielke, C. Böhmer, R.E. Shadwick, A. Abourachid, Woodpeckers minimize cranial absorption of shocks, Curr. Biol. 32 (14) (2022) 3189-3194.

[61]

Y. Zhao, B. Deng, D.D. Cortes, S. Dai, Morphological advantages of angelwing shells in mechanical boring, Acta Geotech. (2023).

[62]

L.K. Grunenfelder, E.E. de Obaldia, Q. Wang, D. Li, B. Weden, C. Salinas, R. Wuhrer, P. Zavattieri, D. Kisailus, Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri, Adv. Funct. Mater. 24 (39) (2014) 6093-6104.

[63]

Y. Fugiwara/JAMSTEC, Zombie worms (osedax roseus) eat away at the bones of a dead whale that has fallen to the seafloor(2019). https://ocean.si.edu/ocean-life/invertebrates/zombie-worms-crave-bone.

[64]

M. Velásquez, P. Valentich-Scott, J.C. Capelo, Marine boring bivalve mollusks from isla margarita, venezuela, Festivus 49 (2017) 247-269.

[65]

N. Nair, A. Ansell, The mechanism of boring in zirphaea crispata (l.)(bivalvia: Pholadidae), Proc. R. Soc. Lond. Ser. B. Biol. Sci. 170 (1019) (1968) 155-173.

[66]

A.D. Ansell, Boring and burrowing mechanisms in petricola pholadiformis lamarck, J. Exp. Mar. Biol. Ecol. 4 (3) (1970) 211-220.

[67]

A.H. Barber, D. Lu, N.M. Pugno, J. R. Soc. Extreme strength observed in limpet teeth, Interface 12 (105) (2015) 20141326.

AI Summary AI Mindmap
PDF (2429KB)

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/