Applications of microbial-induced carbonate precipitation: A state-of-the-art review

Yuze Wang , Charalampos Konstantinou , Sikai Tang , Hongyu Chen

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100008

PDF (4319KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100008 DOI: 10.1016/j.bgtech.2023.100008
Review article
research-article

Applications of microbial-induced carbonate precipitation: A state-of-the-art review

Author information +
History +
PDF (4319KB)

Abstract

Microbial-Induced Carbonate Precipitation (MICP) is a naturally occurring process whereby bacteria produce enzymes that accelerate the precipitation of calcium carbonate. This process is facilitated through various bacterial activities, including ureolysis, sulfate reduction, iron reduction, and denitrification. The application of MICP has been widespread in a range of engineering fields, such as geotechnical, concrete, environmental, and oil and gas engineering for soil stabilization, concrete remediation, heavy metal solidification, and permeability control. Numerous review papers have been published that summarize the mechanisms and properties associated with different MICP applications. The purpose of this review paper is to provide a comprehensive summary of the various engineering applications of MICP, along with the mechanisms, materials, and engineering properties associated with each application. By comparing the similarities and differences in MICP research progress across different engineering fields, this review aims to increase understanding of MICP, stimulate new research ideas, and accelerate the development of MICP techniques.

Keywords

MICP / Mechanisms / Engineering properties / Engineering applications

Cite this article

Download citation ▾
Yuze Wang, Charalampos Konstantinou, Sikai Tang, Hongyu Chen. Applications of microbial-induced carbonate precipitation: A state-of-the-art review. Biogeotechnics, 2023, 1(1): 100008 DOI:10.1016/j.bgtech.2023.100008

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Y. W. acknowledges the financial support of Natural Science Foundation of China (Grant No. 52171262) and Science and Technology Innovation Committee of Shenzhen (Grant No. JCYJ20210324103812033) for conducting this study.

References

[1]

V. Achal, X. Pan, Q. Fu, D. Zhang, Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli, J. Hazard. Mater. 201-202 (2012) 178-184, https://doi.org/10.1016/j.jhazmat.2011.11.067

[2]

A. Al Qabany, K. Soga, C. Santamarina, Factors affecting efficiency of microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng 138 (8) (2012) 992-1001, https://doi.org/10.1061/(asce)gt.1943-5606.0000666

[3]

S. Amidi, J. Wang, Surface treatment of concrete bricks using calcium carbonate precipitation, Constr. Build. Mater. 80 (2015) 273-278, https://doi.org/10.1016/j.conbuildmat.2015.02.001

[4]

J.M. Bergh, B., v.d., Miljević O. Šovljanski, S. Vučetić, S. Markov, J. Ranogajec, A. Bras, Preliminary approach to bio-based surface healing of structural repair cement mortars, Constr. Build. Mater. (2020) 248, https://doi.org/10.1016/j.conbuildmat.2020.118557

[5]

A. Bhattacharya, S.N. Naik, S.K. Khare, Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II), J. Environ. Manage. 215 (2018) 143-152, https://doi.org/10.1016/j.jenvman.2018.03.055

[6]

L. Chaurasia, V. Bisht, L.P. Singh, S. Gupta, A novel approach of biomineralization for improving micro and macro-properties of concrete, Constr. Build. Mater. 195 (2019) 340-351, https://doi.org/10.1016/j.conbuildmat.2018.11.031

[7]

A. Chek, R. Crowley, T.N. Ellis, M. Durnin, B. Wingender, Evaluation of factors affecting erodibility improvement for MICP-treated beach sand, J. Geotech. Geoenviron. Eng 147 (3) (2021), https://doi.org/10.1061/(asce)gt.1943-5606.0002481

[8]

M. Chen, Y. Li, X. Jiang, D. Zhao, X. Liu, J. Zhou, Z. He, C. Zheng, X. Pan, Study on soil physical structure after the bioremediation of Pb pollution using microbial- induced carbonate precipitation methodology, J. Hazard. Mater. 411 (2021) 125103, https://doi.org/10.1016/j.jhazmat.2021.125103

[9]

Z. Chen, X. Pan, H. Chen, X. Guan, Z. Lin, Biomineralization of Pb(II) into Pb- hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead-Zinc mine tailings, J. Hazard. Mater. 301 (2016) 531-537, https://doi.org/10.1016/j.jhazmat.2015.09.023

[10]

L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecol. Eng. 42 (2012) 64-72, https://doi.org/10.1016/j.ecoleng.2012.01.013

[11]

L. Cheng, R. Cord-Ruwisch, Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation, Geomicrobiol. J. 31 (5) (2014) 396-406, https://doi.org/10.1080/01490451.2013.836579

[12]

L. Cheng, M.A. Shahin, Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation, Canadian Geotechnical Journal 53 (9) (2016) 1376-1385, https://doi.org/10.1139/cgj-2015-0635

[13]

L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Canadian Geotechnical Journal 50 (1) (2013) 81-90, https://doi.org/10.1139/cgj-2012-0023

[14]

L. Cheng, M.A. Shahin, R. Cord-Ruwisch, Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments, Géotechnique 64 (12) (2014) 1010-1013, https://doi.org/10.1680/geot.14.T.025

[15]

L. Cheng, M.A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method, Acta Geotech 14 (3) (2018) 615-626, https://doi.org/10.1007/s11440-018-0738-2

[16]

L. Cheng, N. Afur, M.A. Shahin, Bio-cementation for improving soil thermal conductivity, Sustainability 13 (18) (2021), https://doi.org/10.3390/su131810238

[17]

K. Chetty, S. Xie, Y. Song, T. McCarthy, U. Garbe, X. Li, G. Jiang, Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure, J. Water Process Eng (2021) 42, https://doi.org/10.1016/j.jwpe.2021.102139

[18]

S.-G. Choi, K. Wang, Z. Wen, J. Chu, Mortar crack repair using microbial induced calcite precipitation method, Cem. Concr. Compos. 83 (2017) 209-221, https://doi.org/10.1016/j.cemconcomp.2017.07.013

[19]

J. Chu, V. Ivanov, V. Stabnikov, B. Li, Microbial method for construction of an aquaculture pond in sand, Géotechnique 63 (10) (2013) 871-875, https://doi.org/10.1680/geot.SIP13.P.007

[20]

M.-J. Cui, J.-J. Zheng, R.-J. Zhang, H.-J. Lai, J. Zhang, Influence of cementation level on the strength behaviour of bio-cemented sand, Acta Geotech 12 (5) (2017) 971-986, https://doi.org/10.1007/s11440-017-0574-9

[21]

M.-J. Cui, J.-J. Zheng, J. Chu, C.-C. Wu, H.-J. Lai, Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand, Acta Geotech 16 (5) (2020) 1377-1389, https://doi.org/10.1007/s11440-020-01099-0

[22]

A.B. Cunningham, A.J. Phillips, E. Troyer, E. Lauchnor, R. Hiebert, R. Gerlach, L. Spangler, Wellbore leakage mitigation using engineered biomineralization, Energy Procedia 63 (2014) 4612-4619, https://doi.org/10.1016/j.egypro.2014.11.494

[23]

M.O. Cuthbert, L.A. McMillan, S. Handley-Sidhu, M.S. Riley, D.J. Tobler, V.R. Phoenix, A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation, Environ. Sci. Technol. 47 (23) (2013) 13637-13643, https://doi.org/10.1021/es402601g

[24]

K.M. Darby, G.L. Hernandez, J.T. DeJong, R.W. Boulanger, M.G. Gomez, D.W. Wilson, Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng 145 (10) (2019), https://doi.org/10.1061/(asce)gt.1943-5606.0002122

[25]

W. De Muynck, K. Cox, N.D. Belie, W. Verstraete, Bacterial carbonate precipitation as an alternative surface treatment for concrete, Constr. Build. Mater. 22 (5) (2008) 875-885, https://doi.org/10.1016/j.conbuildmat.2006.12.011

[26]

W. De Muynck, D. Debrouwer, N. De Belie, W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Cem. Concr. Res. 38 (7) (2008) 1005-1014, https://doi.org/10.1016/j.cemconres.2008.03.005

[27]

T.D. DeJong, B.F. Michael, N. Klaus, Microbially Induced Cementation to Control Sand Response to Undrained Shear, J. Geotech. Geoenviron. Eng. 132 (11) (2006), http://dx.doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).

[28]

G. Dhanarajan, V. Rangarajan, C. Bandi, A. Dixit, S. Das, K. Ale, R. Sen, Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique, J. Biotechnol. 256 (2017) 46-56, https://doi.org/10.1016/j.jbiotec.2017.05.007

[29]

L. Fang, Q. Niu, L. Cheng, J. Jiang, Y.-Y. Yu, J. Chu, V. Achal, T. You, Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii, Sci. Total Environ. (2021) 787, https://doi.org/10.1016/j.scitotenv.2021.147627

[30]

Ferris, F.G., Stehmeier, L.G. Bacteriogenic Mineral Plugging: U.S. Patent 5143155[P]. 1992-9-1.

[31]

Q. Fu, Y. Wu, S. Liu, L. Lu, J. Wang, The adaptability of Sporosarcina pasteurii in marine environments and the feasibility of its application in mortar crack repair, Constr. Build. Mater. (2022) 332, https://doi.org/10.1016/j.conbuildmat.2022.127371

[32]

G.M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization, Curr. Opin. Biotech. 11 (2000) 271-279, https://doi.org/10.1016/S09581669(00)00095-1

[33]

P.A. Gago, C. Konstantinou, G. Biscontin, P. King, A numerical characterisation of unconfined strength of weakly consolidated granular packs and its effect on fluid- driven fracture behaviour, Rock Mech. Rock Eng 55 (8) (2022) 4565-4575, https://doi.org/10.1007/s00603-022-02885-w

[34]

Y. Gao, L. Hang, J. He, J. Chu, Mechanical behaviour of biocemented sands at various treatment levels and relative densities, Acta Geotech 14 (3) (2018) 697-707, https://doi.org/10.1007/s11440-018-0729-3

[35]

M.G. Gomez, C.M. Anderson, C.M.R. Graddy, J.T. DeJong, D.C. Nelson, T.R. Ginn, Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands, J. Geotech. Geoenviron. Eng 143 (5) (2017), https://doi.org/10.1061/(asce)gt.1943-5606.0001640

[36]

Gomez, M.G., Martinez, B.C., DeJong, J.T., Hunt, C.E., deVlaming, L.A., Major, D. W., Dworatzek, S.M., 2015. Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers - Ground Improvement. 168 (3), 206-216. http://dx.doi.org/10.1680/grim.13.00052.

[37]

N. Guo, Y. Wang, X. Hui, Q. Zhao, Z. Zeng, S. Pan, Z. Guo, Y. Yin, T. Liu, Marine bacteria inhibit corrosion of steel via synergistic biomineralization, Journal of Materials Science & Technology 66 (2021) 82-90, https://doi.org/10.1016/j.jmst.2020.03.089

[38]

Z. Guo, W. Wang, N. Guo, Z. Zeng, T. Liu, X. Wang, Molybdenum-mediated chemotaxis of Pseudoalteromonas lipolytica enhances biofilm-induced mineralization on low alloy steel surface, Corros. Sci. (2019) 159, https://doi.org/10.1016/j.corsci.2019.108123

[39]

N. Hamdan, E. Kavazanjian, Enzyme-induced carbonate mineral precipitation for fugitive dust control, Géotechnique 66 (7) (2016) 546-555, https://doi.org/10.1680/jgeot.15.P.168

[40]

L. Han, J. Li, Q. Xue, Z. Chen, Y. Zhou, C.S. Poon, Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: a critical review, Sci. Total Environ. 746 (2020) 140967, https://doi.org/10.1016/j.scitotenv.2020.140967

[41]

T. Hata, A.C. Saracho, S.K. Haigh, J. Yoneda, K. Yamamoto, Microbial-induced carbonate precipitation applicability with the methane hydrate-bearing layer microbe, J. Nat. Gas Sci. Eng. (2020) 81, https://doi.org/10.1016/j.jngse.2020.103490

[42]

N. Hataf, A. Baharifard, Reducing soil permeability using microbial induced carbonate precipitation (MICP) method: a case study of shiraz landfill soil, Geomicrobiol. J. 37 (2) (2019) 147-158, https://doi.org/10.1080/01490451.2019.1678703

[43]

J. He, J. Chu, Undrained responses of microbially desaturated sand under monotonic loading, J. Geotech. Geoenviron. Eng. 140 (5) (2014) 04014003, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082

[44]

J. He, X. Chen, Q. Zhang, V. Achal, More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2, Int. Biodeterior. Biodegrad. 140 (2019) 67-71, https://doi.org/10.1016/j.ibiod.2019.03.012

[45]

J. Intarasoontron, W. Pungrasmi, P. Nuaklong, P. Jongvivatsakul, S. Likitlersuang, Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing, Constr. Build. Mater. (2021) 302, https://doi.org/10.1016/j.conbuildmat.2021.124227

[46]

N. Jalilvand, A. Akhgar, H.A. Alikhani, H.A. Rahmani, F. Rejali, Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from iranian mine calcareous soils, J. Soil Sci. Plant Nutr. 20 (1) (2019) 206-219, https://doi.org/10.1007/s42729-019-00121-z

[47]

N.J. Jiang, K. Soga, The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures, Géotechnique 67 (1) (2017) 42-55, https://doi.org/10.1680/jgeot.15.P.182

[48]

N.J. Jiang, R. Liu, Y.J. Du, Y.Z. Bi, Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency, Sci. Total Environ. 672 (2019) 722-731, https://doi.org/10.1016/j.scitotenv.2019.03.294

[49]

N.-J. Jiang, K. Soga, Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP, Soils Found 59 (3) (2019) 699-709, https://doi.org/10.1016/j.sandf.2019.02.003

[50]

N.-J. Jiang, K. Soga, M. Kuo, Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures, J. Geotech. Geoenviron. Eng 143 (3) (2017), https://doi.org/10.1061/(asce)gt.1943-5606.0001559

[51]

P. Jongvivatsakul, K. Janprasit, P. Nuaklong, W. Pungrasmi, S. Likitlersuang, Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method, Constr. Build. Mater. 212 (2019) 737-744, https://doi.org/10.1016/j.conbuildmat.2019.04.035

[52]

C.-H. Kang, Y.-J. Kwon, J.-S. So, Bioremediation of heavy metals by using bacterial mixtures, Ecol. Eng. 89 (2016) 64-69, https://doi.org/10.1016/j.ecoleng.2016.01.023

[53]

C.-H. Kang, S.J. Oh, Y. Shin, S.-H. Han, I.-H. Nam, J.-S. So, Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea, Ecol. Eng. 74 (2015) 402-407, https://doi.org/10.1016/j.ecoleng.2014.10.009

[54]

M. Kanwal, R.A. Khushnood, F. Adnan, A.G. Wattoo, A. Jalil, Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment, Cem. Concr. Compos. (2023) 137, https://doi.org/10.1016/j.cemconcomp.2023.104937

[55]

A. Karimian, M. Hassanlourad, Mechanical behaviour of MICP-treated silty sand, Bull. Eng. Geol. Environ. 81 (7) (2022), https://doi.org/10.1007/s10064-022-02780-2

[56]

N. Kip, S. Jansen, M.F.A. Leite, M. de Hollander, M. Afanasyev, E.E. Kuramae, J.A.V. Veen, Methanogens predominate in natural corrosion protective layers on metal sheet piles, Sci. Rep. 7 (1) (2017) 11899, https://doi.org/10.1038/s41598-017-11244-7

[57]

C.M. Kirkland, A. Thane, R. Hiebert, R. Hyatt, J. Kirksey, A.B. Cunningham, R. Gerlach, L. Spangler, A.J. Phillips, Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration, Journal of Petroleum Science and Engineering (2020) 190, https://doi.org/10.1016/j.petrol.2020.107060

[58]

O. Kolawole, I. Ispas, M. Kumar, J. Weber, B. Zhao, G. Zanoni, How can biogeomechanical alterations in shales impact caprock integrity and CO2 storage? Fuel (2021) 291, https://doi.org/10.1016/j.fuel.2021.120149

[59]

Konstantinou, C., 2021. Hydraulic fracturing of artificially generated soft sandstones. University of Cambridge, (Doctoral thesis). https://doi.org/10.17863/CAM.64233.

[60]

C. Konstantinou, G. Biscontin, Experimental investigation of the effects of porosity, hydraulic conductivity, strength, and flow rate on fluid flow in weakly cemented bio-treated sands, Hydrology 9 (11) (2022) 190, https://doi.org/10.3390/hydrology9110190

[61]

C. Konstantinou, G. Biscontin, Soil enhancement via microbially induced calcite precipitation, Geotechnical Aspects of Underground Construction in Soft Ground, 2nd Edition, CRC Press, Cambridge, 2022, pp. 765-772, https://doi.org/10.1201/9781003355595

[62]

C. Konstantinou, G. Biscontin, F. Logothetis, Tensile strength of artificially cemented sandstone generated via microbially induced carbonate precipitation, Materials 14 (2021) 4735, https://doi.org/10.3390/ma14164735

[63]

Konstantinou, C., Biscontin, G., Papanastasiou, P., 2022. Interpretation of fluid injection experiments in poorly consolidated sands, In: 56th U.S. Rock Mechanics/ Geomechanics Symposium. OnePetro, Santa Fe, New Mexico, USA, https://doi.org/10.56952/ARMA-2022-0632.

[64]

C. Konstantinou, Y. Wang, G. Biscontin, A systematic study on the influence of grain characteristics on hydraulic and mechanical performance of MICP-treated porous media, Transp. Porous Media. (2023), https://doi.org/10.1007/s11242-023-01909-5

[65]

C. Konstantinou, G. Biscontin, N.-J. Jiang, K. Soga, Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone, J. Rock Mech. Geotech. Eng. 13 (3) (2021) 579-592, https://doi.org/10.1016/j.jrmge.2021.01.010

[66]

C. Konstantinou, Y. Wang, G. Biscontin, K. Soga, The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens, Sci Rep 11 (2021) 1-17, https://doi.org/10.1038/s41598-021-85712-6

[67]

H.-l Kou, C.-z Wu, P.-p Ni, B.-A. Jang, Assessment of erosion resistance of biocemented sandy slope subjected to wave actions, Appl. Ocean Res. (2020) 105, https://doi.org/10.1016/j.apor.2020.102401

[68]

S.E. Lambert, D.G. Randall, Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine, Water Res 160 (2019) 158-166, https://doi.org/10.1016/j.watres.2019.05.069

[69]

M. Lee, M.G. Gomez, A.C.M. San Pablo, C.M. Kolbus, C.M.R. Graddy, J.T. DeJong, D.C. Nelson, Investigating ammonium by-product removal for ureolytic bio-cementation using meter-scale experiments, Sci. Rep. 9 (1) (2019) 18313, https://doi.org/10.1038/s41598-019-54666-1

[70]

M. Li, K. Wen, Y. Li, L. Zhu, Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment, Geomicrobiol. J. 35 (1) (2017) 15-22, https://doi.org/10.1080/01490451.2017.1303553

[71]

S. Li, C. Li, D. Yao, S. Wang, Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration, Ecol. Eng. (2020) 152, https://doi.org/10.1016/j.ecoleng.2020.105883

[72]

S. Li, Q. Qu, L. Li, K. Xia, Y. Li, T. Zhu, Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater, Water Res 166 (2019) 115094, https://doi.org/10.1016/j.watres.2019.115094

[73]

H. Lin, M.T. Suleiman, D.G. Brown, E. Kavazanjian, Mechanical behavior of sands treated by microbially induced carbonate precipitation, J. Geotech. Geoenviron. Eng 142 (2) (2015), https://doi.org/10.1061/(asce)gt.1943-5606.0001383

[74]

K.-W. Liu, N.-J. Jiang, J.-D. Qin, Y.-J. Wang, C.-S. Tang, X.-L. Han, An experimental study of mitigating coastal sand dune erosion by microbial- and enzymatic- induced carbonate precipitation, Acta Geotech 16 (2) (2020) 467-480, https://doi.org/10.1007/s11440-020-01046-z

[75]

L. Liu, H. Liu, A.W. Stuedlein, T.M. Evans, Y. Xiao, Strength, stiffness, and microstructure characteristics of biocemented calcareous sand, Canadian Geotechnical Journal 56 (10) (2019) 1502-1513, https://doi.org/10.1139/cgj-2018-0007

[76]

P. Liu, Y. Zhang, Q. Tang, S. Shi, Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability, Biochem. Eng. J. (2021) 166, https://doi.org/10.1016/j.bej.2020.107856

[77]

S. Liu, R. Wang, J. Yu, X. Peng, Y. Cai, B. Tu, Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles, Constr. Build. Mater. (2020) 243, https://doi.org/10.1016/j.conbuildmat.2020.118202

[78]

T. Liu, Z. Guo, Z. Zeng, N. Guo, Y. Lei, T. Liu, S. Sun, X. Chang, Y. Yin, X. Wang, Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization, ACS Appl. Mater. Interfaces. 10 (46) (2018) 40317-40327, https://doi.org/10.1021/acsami.8b14991

[79]

A. Mahawish, A. Bouazza, W.P. Gates, Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels, J. Geotech. Geoenviron. Eng. 145 (8) (2019), https://doi.org/10.1061/(asce)gt.1943-5606.0002066

[80]

A. Martinez, L. Huang, M.G. Gomez, Thermal conductivity of MICP-treated sands at varying degrees of saturation, Géotech. Lett. 9 (1) (2019) 15-21, https://doi.org/10.1680/jgele.18.00126

[81]

B.C. Martinez, J.T. DeJong, T.R. Ginn, B.M. Montoya, T.H. Barkouki, C. Hunt, B. Tanyu, D. Major, Experimental optimization of microbial-induced carbonate precipitation for soil improvement, J. Geotech. Geoenviron. Eng. 139 (4) (2013) 587-598, https://doi.org/10.1061/(asce)gt.1943-5606.0000787

[82]

T. Marzin, B. Desvages, A. Creppy, L. Lépine, A. Esnault-Filet, H. Auradou, Using microfluidic set-up to determine the adsorption rate of sporosarcina pasteurii bacteria on sandstone, Transp. Porous Media. 132 (2) (2020) 283-297, https://doi.org/10.1007/s11242-020-01391-3

[83]

H. Meng, Y. Gao, J. He, Y. Qi, L. Hang, Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests, Geoderma (2021) 383, https://doi.org/10.1016/j.geoderma.2020.114723

[84]

B.M. Montoya, J.T. DeJong, Stress-strain behavior of sands cemented by microbially inudced carbonate precipitation, J. Geotech. Geoenviron. Eng. 141 (6) (2015) 04015019, https://doi.org/10.1061/(ASCE)GT.1943-5606

[85]

B.M. Montoya, J.T. Dejong, R.W. Boulanger, Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation, Géotechnique 63 (4) (2013) 302-312, https://doi.org/10.1680/geot.SIP13.P.019

[86]

S.-W. Moon, G. Vinoth, S. Subramanian, J. Kim, T. Ku, Effect of fine particles on strength and stiffness of cement treated sand, Granular Matter 22 (1) (2019), https://doi.org/10.1007/s10035-019-0975-6

[87]

A.J. Mugwar, M.J. Harbottle, Toxicity effects on metal sequestration by microbially-induced carbonate precipitation, J. Hazard. Mater. 314 (2016) 237-248, https://doi.org/10.1016/j.jhazmat.2016.04.039

[88]

D. Mujah, L. Cheng, M.A. Shahin, Microstructural and geomechanical study on biocemented sand for optimization of MICP process, J. Mater. Civ. Eng 31 (4) (2019), https://doi.org/10.1061/(asce)mt.1943-5533.0002660

[89]

W. Mwandira, K. Nakashima, S. Kawasaki, Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand, Ecol. Eng. 109 (2017) 57-64, https://doi.org/10.1016/j.ecoleng.2017.09.011

[90]

D. de Oliveira, E.J. Horn, D.G. Randall, Copper mine tailings valorization using microbial induced calcium carbonate precipitation, J. Environ. Manage 298 (2021) 113440, https://doi.org/10.1016/j.jenvman.2021.113440

[91]

L.A. van Paassen, R. Ghose, T.J.M. van der Linden, W.R.L. van der Star, M.C.M. van Loosdrecht, Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment, J. Geotech. Geoenviron. Eng. 136 (2010) 1721-1728, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[92]

D. Peng, S. Qiao, Y. Luo, H. Ma, L. Zhang, S. Hou, B. Wu, H. Xu, Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil, J. Hazard. Mater. 400 (2020) 123116, https://doi.org/10.1016/j.jhazmat.2020.123116

[93]

J. Peng, Z. Liu, Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment, PLoS One 14 (6) (2019) e0218396, https://doi.org/10.1371/journal.pone.0218396

[94]

S. Peng, H. Di, L. Fan, W. Fan, L. Qin, Factors affecting permeability reduction of MICP for fractured rock, Front. Earth Sci (2020) 8, https://doi.org/10.3389/feart.2020.00217

[95]

A.J. Phillips, E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach, A.B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, R. Esposito, Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): a field scale demonstration, Journal of Petroleum Science and Engineering 171 (2018) 1141-1148, https://doi.org/10.1016/j.petrol.2018.08.012

[96]

A.J. Phillips, A.B. Cunningham, R. Gerlach, R. Hiebert, C. Hwang, B.P. Lomans, J. Westrich, C. Mantilla, J. Kirksey, R. Esposito, L. Spangler, Fracture sealing with microbially-induced calcium carbonate precipitation: a field study, Environ. Sci. Technol. 50 (7) (2016) 4111-4117, https://doi.org/10.1021/acs.est.5b05559

[97]

A.A. Qabany, K. Soga, Effect of chemical treatment used in MICP on engineering properties of cemented soils, Géotechnique 63 (4) (2013) 331-339, https://doi.org/10.1680/geot.SIP13.P.022

[98]

C. Qian, T. Zheng, X. Zhang, Y. Su, Application of microbial self-healing concrete: case study, Constr. Build. Mater. (2021) 290, https://doi.org/10.1016/j.conbuildmat.2021.123226

[99]

X. Qian, C. Fang, M. Huang, V. Achal, Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil, J. Cleaner Prod. 164 (2017) 198-208, https://doi.org/10.1016/j.jclepro.2017.06.195

[100]

S. Qiao, G. Zeng, X. Wang, C. Dai, M. Sheng, Q. Chen, F. Xu, H. Xu, Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration, Chemosphere (2021) 274, https://doi.org/10.1016/j.chemosphere.2021.129661

[101]

K. Rowshanbakht, M. Khamehchiyan, R.H. Sajedi, M.R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng. 89 (2016) 49-55, https://doi.org/10.1016/j.ecoleng.2016.01.010

[102]

E. Salifu, E. MacLachlan, K.R. Iyer, C.W. Knapp, A. Tarantino, Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation, Eng. Geol. 201 (2016) 96-105, https://doi.org/10.1016/j.enggeo.2015.12.027

[103]

A.C.M. San Pablo, M. Lee, C.M.R. Graddy, C.M. Kolbus, M. Khan, A. Zamani, N. Martin, C. Acuff, J.T. DeJong, M.G. Gomez, D.C. Nelson, Meter-scale biocementation experiments to advance process control and reduce impacts: examining spatial control, ammonium by-product removal, and chemical reductions, J. Geotech. Geoenviron. Eng 146 (11) (2020), https://doi.org/10.1061/(asce)gt.1943-5606.0002377

[104]

M.A. Shahin, K. Jamieson, L. Cheng, Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes, Géotech. Lett. 10 (2) (2020) 211-215, https://doi.org/10.1680/jgele.19.00093

[105]

M. Sharma, N. Satyam, K.R. Reddy, Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation, Eng. Geol. (2022) 302, https://doi.org/10.1016/j.enggeo.2022.106635

[106]

G. Shi, J. Qi, Y. Wang, S. Liu, Experimental study on the prevention of coal mine dust with biological dust suppressant, Powder Technol 391 (2021) 162-172, https://doi.org/10.1016/j.powtec.2021.05.096

[107]

M. Simatupang, M. Okamura, Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing, Soils Found 57 (4) (2017) 619-631, https://doi.org/10.1016/j.sandf.2017.04.003

[108]

M. Simatupang, M. Okamura, K. Hayashi, H. Yasuhara, Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation, Soil Dyn. Earthquake Eng 115 (2018) 710-718, https://doi.org/10.1016/j.soildyn.2018.09.027

[109]

M.G. Sohail, Z.A. Disi, N. Zouari, N.A. Nuaimi, R. Kahraman, B. Gencturk, D.F. Rodrigues, Y. Yildirim, Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil, Constr. Build. Mater. (2022) 328, https://doi.org/10.1016/j.conbuildmat.2022.126943

[110]

N.W. Soon, L.M. Lee, T.C. Khun, H.S. Ling, Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation, J. Geotech. Geoenviron. Eng 140 (5) (2014), https://doi.org/10.1061/(asce)gt.1943-5606.0001089

[111]

V. Stabnikov, V. Ivanov, J. Chu, Sealing of sand using spraying and percolating biogrouts for the construction of model aquaculture pond in arid desert, Int. Aquat. Res,. 8 (3) (2016) 207-216, https://doi.org/10.1007/s40071-016-0136-z

[112]

X. Sun, L. Miao, R. Chen, H. Wang, L. Wu, J. Xia, J. Geotech. Liquefaction resistance of biocemented loess soil, Geoenviron. Eng 147 (11) (2021), https://doi.org/10.1061/(asce)gt.1943-5606.0002638

[113]

S. Tang, X. Chang, M. Li, T. Ge, S. Niu, D. Wang, Y. Jiang, S. Sun, Fabrication of calcium carbonate coated-stainless steel mesh for efficient oil-water separation via bacterially induced biomineralization technique, Chem. Eng. J. (2021) 405, https://doi.org/10.1016/j.cej.2020.126597

[114]

S. Tang, S. Sun, T. Liu, M. Li, Y. Jiang, D. Wang, N. Guo, Z. Guo, X. Chang, Bionic engineering-induced formation of hierarchical structured minerals with superwetting surfaces for oil-water separation, J. Membr. Sci. (2023) 669, https://doi.org/10.1016/j.memsci.2022.121261

[115]

D. Terzis, L. Laloui, Cell-free soil bio-cementation with strength, dilatancy and fabric characterization, Acta Geotech 14 (3) (2019) 639-656, https://doi.org/10.1007/s11440-019-00764-3

[116]

D. Terzis, L. Laloui, S. Dornberger, R. Harran, In A Full-Scale Application of Slope Stabilization via Calcite Bio-Mineralization Followed by Long-Term GIS Surveillance, Geo-Congress on Biogeotechnics, Minneapolis, MN, Minneapolis, MN, 2020.

[117]

D.J. Tobler, J.M. Minto, G. El Mountassir, R.J. Lunn, V.R. Phoenix, Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: influence on hydraulic and mechanical performance, Water Resour. Res. 54 (10) (2018) 8295-8308, https://doi.org/10.1029/2018wr023032

[118]

S. Venuleo, L. Laloui, D. Terzis, T. Hueckel, M. Hassan, Microbially induced calcite precipitation effect on soil thermal conductivity, Géotechnique Letters 6 (1) (2016) 39-44, https://doi.org/10.1680/jgele.15.00125

[119]

X. Wang, J. Xu, Z. Wang, W. Yao, Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity, Constr. Build. Mater. (2022) 337, https://doi.org/10.1016/j.conbuildmat.2022.127581

[120]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Microscale visualization of microbial- induced calcium carbonate precipitation processes, J. Geotech. Geoenviron. Eng 145 (9) (2019), https://doi.org/10.1061/(asce)gt.1943-5606.0002079

[121]

Y. Wang, K. Soga, J.T. Dejong, A.J. Kabla, A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP), Géotechnique 69 (12) (2019) 1086-1094, https://doi.org/10.1680/jgeot.18.P.031

[122]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study, J. Geotech. Geoenviron. Eng 147 (6) (2021), https://doi.org/10.1061/(asce)gt.1943-5606.0002509

[123]

Wang, Y.Z., Soga, K., Jiang, N.J., Microbial induced carbonate precipitation (MICP): the case for microscale perspective. In 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, 2017.

[124]

Z. Wang, N. Zhang, Y. Jin, Q. Li, J. Xu, Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/erosion control, Marine Georesour. Geotechnol. 39 (12) (2020) 1459-1471, https://doi.org/10.1080/1064119x.2020.1850949

[125]

Z. Wang, N. Zhang, J. Ding, Q. Li, J. Xu, Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction, Int. J. Heat Mass Transfer. (2020) 147, https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899

[126]

V.S. Whiffin, L.A. van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J. 24 (5) (2007) 417-423, https://doi.org/10.1080/01490450701436505

[127]

C. Wu, J. Chu, S. Wu, Y. Hong, 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction, Eng. Geol. 249 (2019) 23-30, https://doi.org/10.1016/j.enggeo.2018.12.017

[128]

S. Wu, B. Li, J. Chu, Stress-dilatancy behavior of MICP-treated sand, Int. J. Geomech 21 (3) (2021), https://doi.org/10.1061/(asce)gm.1943-5622.0001923

[129]

P. Xiao, H. Liu, Y. Xiao, A.W. Stuedlein, T.M. Evans, Liquefaction resistance of bio- cemented calcareous sand, Soil Dyn. Earthquake Eng 107 (2018) 9-19, https://doi.org/10.1016/j.soildyn.2018.01.008

[130]

Y. Xiao, Y. Wang, C.S. Desai, X. Jiang, H. Liu, Strength and deformation responses of biocemented sands using a temperature-controlled method, Int. J. Geomech 19 (11) (2019), https://doi.org/10.1061/(asce)gm.1943-5622.0001497

[131]

Y. Xiao, X. He, A.W. Stuedlein, J. Chu, T. Matthew Evans, L.A. van Paassen, Crystal growth of MICP through microfluidic chip tests, J. Geotech. Geoenviron. Eng 148 (5) (2022), https://doi.org/10.1061/(asce)gt.1943-5606.0002756

[132]

Y. Xiao, X. He, W. Wu, A.W. Stuedlein, T.M. Evans, J. Chu, H. Liu, L.A. van Paassen, H. Wu, Kinetic biomineralization through microfluidic chip tests, Acta Geotech 16 (10) (2021) 3229-3237, https://doi.org/10.1007/s11440-021-01205-w

[133]

J. Yang, X. Pan, C. Zhao, S. Mou, V. Achal, F.A. Al-Misned, M.G. Mortuza, G.M. Gadd, Bioimmobilization of heavy metals in acidic copper mine tailings soil, Geomicrobiol. J. 33 (3-4) (2016) 261-266, https://doi.org/10.1080/01490451.2015.1068889

[134]

Z. Yang, X. Cheng, A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures, Construction and Building Materials 41 (2013) 505-515, https://doi.org/10.1016/j.conbuildmat.2012.12.055

[135]

T. Yin, H. Lin, Y. Dong, B. Li, Y. He, C. Liu, X. Chen, A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization, J. Hazard. Mater. 401 (2021) 123269, https://doi.org/10.1016/j.jhazmat.2020.123269

[136]

X. Yu, H. Rong, Seawater based MICP cements two/one-phase cemented sand blocks, Appl. Ocean Res. (2022) 118, https://doi.org/10.1016/j.apor.2021.102972

[137]

H. Yuan, Q. Zhang, X. Hu, M. Wu, Y. Zhao, Y. Feng, D. Shen, Application of zeolite as a bacterial carrier in the self-healing of cement mortar cracks, Constr. Build. Mater. (2022) 331, https://doi.org/10.1016/j.conbuildmat.2022.127324

[138]

A. Zamani, B.M. Montoya, Undrained monotonic shear response of MICP-treated silty sands, J. Geotech. Geoenviron. Eng 144 (6) (2018), https://doi.org/10.1061/(asce)gt.1943-5606.0001861

[139]

A. Zamani, B.M. Montoya, Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation, Soil Dyn. Earthquake Eng 120 (2019) 436-448, https://doi.org/10.1016/j.soildyn.2019.01.010

[140]

A. Zamani, B.M. Montoya, M.A. Gabr, Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (MICP) in fine-grain sands and silty sand, Can. Geotech. J. 56 (12) (2019) 1889-1900, https://doi.org/10.1139/cgj-2018-0551

[141]

Y. Zeng, Z. Chen, Y. Du, Q. Lyu, Z. Yang, Y. Liu, Z. Yan, Microbiologically induced calcite precipitation technology for mineralizing lead and cadmium in landfill leachate, J. Environ. Manag. 296 (2021) 113199, https://doi.org/10.1016/j.jenvman.2021.113199

[142]

C. Zhang, T. Shi, J. Liu, Z. He, H. Thomas, H. Dong, B. Rinkevich, Y. Wang, J.H. Hyun, M. Weinbauer, C. Lopez-Abbate, Q. Tu, S. Xie, Y. Yamashita, P. Tishchenko, Q. Chen, R. Zhang, N. Jiao, Eco-engineering approaches for ocean negative carbon emission, Sci Bull 67 (24) (2022) 2564-2573, https://doi.org/10.1016/j.scib.2022.11.016

[143]

M. Zhang, L. Zhao, G.K. Li, C. Zhu, S. Dong, Z. Li, C. Tang, J. Ji, J. Chen, Microbially induced magnesium carbonate precipitation and its potential application in combating desertification, Geomicrobiol. J. 38 (6) (2021) 549-560, https://doi.org/10.1080/01490451.2021.1900461

[144]

C. Zhao, Q. Fu, W. Song, D. Zhang, J. Ahati, X. Pan, F.A. Al-Misned, M.G. Mortuza, Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water, Ecol. Eng. 81 (2015) 107-114, https://doi.org/10.1016/j.ecoleng.2015.04.012

[145]

Y. Zhao, L. Peng, W. Zeng, Cs Poon, Z. Lu, Improvement in properties of concrete with modified RCA by microbial induced carbonate precipitation, Cem. Concr. Compos. (2021) 124, https://doi.org/10.1016/j.cemconcomp.2021.104251

[146]

M. Zhong, B. Liu, L. Zhang, J. Wang, J. Chen, J. Li, Y. Liu, L. Ming, Experimental study on microbial induced calcium carbonate precipitation to enhance reservoir recovery, Iran. J. Biotechnol. 20 (1) (2022) e3024, https://doi.org/10.30498/ijb.2021.279942.3024

[147]

S.M.A. Zomorodian, H. Ghaffari, B.C. O'Kelly, Stabilisation of crustal sand layer using biocementation technique for wind erosion control, Aeolian Res. 40 (2019) 34-41, https://doi.org/10.1016/j.aeolia.2019.06.001

AI Summary AI Mindmap
PDF (4319KB)

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/