Strength and uniformity of EICP-treated sand under multi-factor coupling effects

Jianwei Zhang , Yue Yin , Wanpeng Shi , Hanliang Bian , Lei Shi , Luyuan Wu , Zhiguang Han , Junjie Zheng , Xiang He

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100007

PDF (9796KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100007 DOI: 10.1016/j.bgtech.2023.100007
Research article
research-article

Strength and uniformity of EICP-treated sand under multi-factor coupling effects

Author information +
History +
PDF (9796KB)

Abstract

Enzyme-induced carbonate precipitation (EICP) is an environment-friendly method for improving soil mechanical properties. The extraction and application of plant crude urease reduces the treatment cost. However, in terms of the efficiency of calcium carbonate production and cementation, crude urease is considered inferior to pure urease or urease bacteria. In this paper, urease extracted from soybean was used to explore the effects of urease activity, treatment method, number of treatments (NTs), injection rate, and curing time on the unconfined compressive strength and calcium carbonate distribution characteristics of EICP-treated sand. The results showed that, compared with the pre-mixing method and the two-phase method, the one-phase method produced higher strength and a more uniform distribution of calcium carbonate. The cementation efficiency decreased with the increase of urease activity. The high-rate injection can improve the treatment effect of high-activity urease. Under the same cementation level, high strength and calcium carbonate cementation efficiency can be achieved by one-phase-low-activity EICP treatment.

Keywords

Urease-induced calcium carbonate precipitation (EICP) / Strength / Uniformity / Cementation level / Treatment method / Injection rate / Urease activity

Cite this article

Download citation ▾
Jianwei Zhang, Yue Yin, Wanpeng Shi, Hanliang Bian, Lei Shi, Luyuan Wu, Zhiguang Han, Junjie Zheng, Xiang He. Strength and uniformity of EICP-treated sand under multi-factor coupling effects. Biogeotechnics, 2023, 1(1): 100007 DOI:10.1016/j.bgtech.2023.100007

登录浏览全文

4963

注册一个新账户 忘记密码

Statements and Declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Acknowledgements

All authors thank the anonymous reviewers and the editor for the constructive comments on the earlier version of the manuscript. The work reported in this paper was financially supported by National Natural Science Foundation of China, China (Grant No. 42177454), the Training Plan of Young Scholar in Colleges and Universities of Henan Province, China (Grant No. 2019GGJS041), Postgraduate Education Reform and Quality Improvement Project of Henan Province, China (Grant No. YJS2021JD13).

References

[1]

A. Al Qabany, K. Soga, Effect of chemical treatment used in MICP on engineering properties of cemented soils, Geotechnique 63 (2013) 331-339, https://doi.org/10.1680/geot.SIP13.P.022

[2]

J.T. Dejong, K. Soga, E. Kavazanjian, et al., Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges, Bio- Chemo- Mech. Process Geotech. Eng. - Geotech. Symp. Print 2013 (6) (2013) 143-157, https://doi.org/10.1680/bcmpge.60531.014

[3]

A. Almajed, H. Khodadadi Tirkolaei, E. Kavazanjian, J. Geotech. Baseline investigation on enzyme-induced calcium carbonate precipitation, Geoenvironmental. Eng. 144 (2018) 04018081, https://doi.org/10.1061/(asce)gt.1943-5606.0001973

[4]

Hamdan, Kavazanjian, O.’Donnell, 2013, Carbonate cementation via plant derived urease. In: 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013. pp 1-11.

[5]

D.W. Griffin, Atmospheric movement of microorganisms in clouds of desert dust and implications for human health, Clin. Microbiol. Rev. 20 (2007) 459-477, https://doi.org/10.1128/CMR.00039-06

[6]

J. He, J. Chu, Cementation of sand due to salt precipitation in drying process, Mar. Georesources Geotechnol. 35 (2017) 441-445, https://doi.org/10.1080/1064119X.2016.1168498

[7]

N.J. Jiang, Y.J. Wang, J. Chu, et al., Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications, Soil Use Manag. 38 (2021) 68-93, https://doi.org/10.1111/sum.12736

[8]

Y. Xiao, H. Chen, A.W. Stuedlein, et al. J. Geotech., Restraint of particle breakage by biotreatment method, Geoenvironmental Eng. 146 (2020) 04020123, https://doi.org/10.1061/(asce)gt.1943-5606.0002384

[9]

M. Nasser, A.J. of S. Hamdan, Applications of Enzyme Induced Carbonate Precipitation (EICP) for Soil Improvement, J. Chem. Inf. Model 53 (2019) 1689-1699.

[10]

Y. Gao, X. Tang, J. Chu, J. He, Microbially induced calcite precipitation for seepage control in sandy soil, Geomicrobiol. J. 36 (2019) 366-375, https://doi.org/10.1080/01490451.2018.1556750

[11]

S.-G. Choi, S.-S. Park, S. Wu, J. Chu, Methods for calcium carbonate content measurement of biocemented soils, J. Mater. Civ. Eng. 29 (2017) 06017015, https://doi.org/10.1061/(asce)mt.1943-5533.0002064

[12]

I.H. Nam, C.M. Chon, K.Y. Jung, et al., Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials, KSCE J. Civ. Eng. 19 (2015) 1620-1625, https://doi.org/10.1007/s12205-014-0558-3

[13]

X. Sun, L. Miao, J. Yuan, et al., Application of enzymatic calcification for dust control and rainfall erosion resistance improvement, Sci. Total Environ. 759 (2021) 143468, https://doi.org/10.1016/j.scitotenv.2020.143468

[14]

Kavazanjian Hamdan, Enzyme-induced carbonate mineral precipitation for fugitive dust control, Geotechnique 66 (2016) 546-555.

[15]

V. Ivanov, J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Rev. Environ. Sci. Biotechnol. 7 (2008) 139-153.

[16]

J. Carmona, J. Paulo, O. Venda, J., L. L. Luis, M., G. P. Antonio,Improvement of a sandy soil by enzymatic calcium carbonate precipitation, Proc. Inst. Civ. Eng. Geotech. Eng. 171 (2018) 3-15.

[17]

M.J. Cui, H.J. Lai, T. Hoang, J. Chu, One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement, Acta Geotech 16 (2021) 481-489, https://doi.org/10.1007/s11440-020-01043-2

[18]

J. Chu, V. Ivanov, J. He, et al., Development of Microbial Geotechnology in Singapore, Geo-Front. 2011 Adv. Geotech. Eng. 416 (2011) 4070-4078.

[19]

R.A.N. Dilrukshi, K. Nakashima, S. Kawasaki, Soil improvement using plant-derived urease-induced calcium carbonate precipitation, Soils Found 58 (2018) 894-910, https://doi.org/10.1016/j.sandf.2018.04.003

[20]

M.G. Arab, H. Rohy, W. Zeiada, et al., One-Phase EICP Biotreatment of Sand Exposed to Various Environmental Conditions, J. Mater. Civ. Eng. 33 (2021) 04020489, https://doi.org/10.1061/(asce)mt.1943-5533.0003596

[21]

G. El Mountassir, J.M. Minto, L.A. van Paassen, et al., Applications of Microbial Processes in Geotechnical Engineering, 1st ed.., Elsevier Inc, 2018.

[22]

A. Nafisi, B.M. Montoya, T.M. Evans, Shear Strength Envelopes of Biocemented Sands with Varying Particle Size and Cementation Level, J. Geotech. Geoenvironmental Eng. 146 (2020) 04020002, https://doi.org/10.1061/(asce)gt.1943-5606.0002201

[23]

J.N. Pasillas, H. Khodadadi, K. Martin, et al., Viscosity-Enhanced EICP Treatment of Soil 6 (2018) 145-154, https://doi.org/10.1061/9780784481592.015

[24]

L. Cheng, M.A. Shahin, D. Mujah, Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization, J. Geotech. Geoenvironmental Eng. 143 (2017) 04016083, https://doi.org/10.1061/(asce)gt.1943-5606.0001586

[25]

H. Khodadadii, N. Javadi, V. Krishnan, et al. Crude urease extract for biocementation, J. Mater. Civ. Eng. 32 (2020) 04020374, https://doi.org/10.1061/(asce)mt.1943-5533.0003466

[26]

R.L. Blakeley, B. Zerner, Jack bean urease: the first nickel enzyme, Inorganica Chim. Acta 79 (1983) 11, https://doi.org/10.1016/s0020-1693(00)95029-1

[27]

X. Sun, L. Miao, H. Wang, et al., Mineralization crust field experiment for desert sand solidification based on enzymatic calcification, J. Environ. Manag. 287 (2021) 1-11, https://doi.org/10.1016/j.jenvman.2021.112315

[28]

Larsen, J., Poulsen, M., Agerbaek, M., Lundgaard T. (2008) Larsen, J., Poulsen, M., Agerbaek, M., & Lundgaard, T. (2008). Plugging of Fractures in Chalk Reservoirs by Enzyme-Induced Calcium Carbonate Precipitation. SPE Production & Operation. Retrieved from 〈https://www.onepetro.org/download/journal-paper/SPE-1085〉. SPE Prod Oper 1:4-7.

[29]

C.S. Tang, L.Yang Yin, N.Jun Jiang, et al., Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review, Environ. Earth Sci. 79 (2020) 94, https://doi.org/10.1007/s12665-020-8840-9

[30]

X. Sun, L. Miao, L. Wu, Applicability and Theoretical Calculation of Enzymatic Calcium Carbonate Precipitation for Sand Improvement, Geomicrobiol. J. 37 (2020) 389-399, https://doi.org/10.1080/01490451.2019.1710625

[31]

A. Almajed, Enzyme Induced Carbonate Precipitation (EICP) for Soil Improvement, Dr deseration 4 (2017).

[32]

A. Dakhane, S. Das, H. Hansen, et al., Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: quantification based on fracture response, J. Mater. Civ. Eng. 30 (2018) 04018035, https://doi.org/10.1061/(asce)mt.1943-5533.0002218

[33]

M.G. Gomez, B.C. Martinez, J.T. Dejong, et al., Field-scale bio-cementation tests to improve sands, Proc. Inst. Civ. Eng. Gr. Improv. 168 (2015) 206-216, https://doi.org/10.1680/grim.13.00052

[34]

A.J. Phillips, R. Gerlach, E. Lauchnor, et al., Engineered applications of ureolytic biomineralization: A review, Biofouling 29 (2013) 715-733, https://doi.org/10.1080/08927014.2013.796550

[35]

M.J. Cui, J.J. Zheng, R.J. Zhang, et al., Influence of cementation level on the strength behaviour of bio-cemented sand, Acta Geotech 12 (2017) 971-986, https://doi.org/10.1007/s11440-017-0574-9

[36]

Y. Xiao, X. He, A.W. Stuedlein, et al., Crystal Growth of MICP through Microfluidic Chip Tests, J. Geotech. Geoenvironmental Eng. 148 (2022) 1-9, https://doi.org/10.1061/(asce)gt.1943-5606.0002756

[37]

van Paassen L. (2009) Biogrout: Ground Improvement by Microbially Induced Carbonate Precipitation.

[38]

A. Almajed, H. Khodadadi, E. Kavazanjian, Sisal Fiber Reinforcement of EICP- Treated Soil 1 (2018) 29-36, https://doi.org/10.1061/9780784481592.004

[39]

S. Liu, K. Wen, C. Armwood, et al., Enhancement of MICP-treated sandy soils against environmental deterioration, J. Mater. Civ. Eng. 31 (2019) 04019294, https://doi.org/10.1061/(asce)mt.1943-5533.0002959

[40]

Y. Xiao, X. He, T.M. Evans, et al., Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand, J. Geotech. Geoenvironmental Eng. 145 (2019) 04019048, https://doi.org/10.1061/(asce)gt.1943-5606.0002108

[41]

Y. Xiao, A.W. Stuedlein, J. Ran, et al., Effect of particle shape on strength and stiffness of biocemented glass beads, J. Geotech. Geoenvironmental Eng. 145 (2019) 06019016, https://doi.org/10.1061/(asce)gt.1943-5606.0002165

[42]

Y. Zhao, Z. Xiao, C. Fan, et al., Comparative mechanical behaviors of four fiber- reinforced sand cemented by microbially induced carbonate precipitation, Bull. Eng. Geol. Environ. 79 (2020) 3075-3086, https://doi.org/10.1007/s10064-020-01756-4

[43]

Y. Xiao, Y. Wang, S. Wang, et al., Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method, Acta Geotech 16 (2021) 1417-1427, https://doi.org/10.1007/s11440-020-01122-4

[44]

G. Ma, X. He, X. Jiang, et al., Strength and permeability of bentonite-assisted biocemented coarse sand, Can. Geotech. J 57 (2021) 969-981.

[45]

X. Sun, L. Miao, T. Tong, C. Wang, Study of the effect of temperature on microbially induced carbonate precipitation, Acta Geotech 14 (2019) 627-638, https://doi.org/10.1007/s11440-018-0758-y

[46]

ASTM D2166 (2013) Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken.

[47]

A. Almajed, H. Abbas, M. Arab, et al., Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands, J. Clean. Prod. 274 (2020) 122627, https://doi.org/10.1016/j.jclepro.2020.122627

[48]

D. Yao, J. Wu, G. Wang, et al., Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism, Acta Geotech 16 (2021) 1401-1416, https://doi.org/10.1007/s11440-020-01112-6

[49]

H. Yasuhara, D. Neupane, K. Hayashi, M. Okamura, Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils Found 52 (2012) 539-549, https://doi.org/10.1016/j.sandf.2012.05.011

[50]

T. Hoang, J. Alleman, B. Cetin, et al., Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme, J. Mater. Civ. Eng. 32 (2020), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083

[51]

D. Neupane, H. Yasuhara, N. Kinoshita, T. Unno, Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique, J. Geotech. Geoenvironmental Eng. 139 (2013), https://doi.org/10.1061/(asce)gt.1943-5606.0000959

[52]

Y. Zhao, C. Fan, F. Ge, et al., Enhancing Strength of MICP-Treated Sand with Scrap of Activated Carbon-Fiber Felt, J Mater Civ Eng 32 (2020) 04020061, https://doi.org/10.1061/(asce)mt.1943-5533.0003136

[53]

D. Mujah, M.A. Shahin, L. Cheng, A. Karrech, Experimental and analytical study on geomechanical behavior of biocemented sand, Int. J. Geomech. 21 (2021) 0002105, https://doi.org/10.1061/(asce)gm.1943-5622.0002105

[54]

S.G. Choi, K. Wang, J. Chu, Properties of biocemented, fiber reinforced sand, Constr. Build. Mater. 120 (2016) 623-629, https://doi.org/10.1016/j.conbuildmat.2016.05.124

[55]

S. Liu, K. Wen, F. Amini, L. Li, Investigation of Nonwoven Geotextiles for Full Contact Flexible Mould Used in Preparation of MICP-treated Geomaterial, Int. J. Geosynth. Gr. Eng. 6 (2020) 1-12, https://doi.org/10.1007/s40891-020-00197-z

[56]

S. Liu, R. Wang, J. Yu, et al., Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles, Constr. Build. Mater. 243 (2020) 118202, https://doi.org/10.1016/j.conbuildmat.2020.118202

[57]

J. Zhang, X.J. Wang, L. Shi, Y. Yin, Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area, Constr. Build. Mater. 339 (2022) 127792, https://doi.org/10.1016/j.conbuildmat.2022.127792

[58]

J.T. DeJong, M.B. Fritzges, K. Nüsslein, Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenvironmental Eng. 132 (2006) 1381-1392, https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1381)

[59]

C. Lv, C. Zhu, C.S. Tang, et al., Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand, Geosynth. Int. 28 (2021) 195-205, https://doi.org/10.1680/jgein.20.00037

[60]

J. Larsen, M. Poulsen, M. Agerbaek, T. Lundgaard, Plugging of fractures in chalk reservoirs by enzyme-induced calcium carbonate precipitation, SPE Prod. Oper 23 (2008) 478-483.

[61]

T. Hoang, J. Alleman, B. Cetin, et al., Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP, Can. Geotech. J. 56 (2018), https://doi.org/10.1139/cgj-2018-0191

AI Summary AI Mindmap
PDF (9796KB)

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/