Mitigation of soil liquefaction using microbial technology: An overview

Kangda Wang , Shifan Wu , Jian Chu

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100005

PDF (4859KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100005 DOI: 10.1016/j.bgtech.2023.100005
Review article
research-article

Mitigation of soil liquefaction using microbial technology: An overview

Author information +
History +
PDF (4859KB)

Abstract

Soil liquefaction is a major geo-hazard. As liquefaction could occur anywhere in a sand layer and result in large-scale lateral spreading, treatment for liquefaction needs to be carried out over a large extent. The cost-effectiveness of the treatment then becomes a major consideration. With the development of microbial geotechnologies, some new approaches for liquefaction mitigation have been developed. Some of the methods offer more advantages over the existing methods. This paper gives an overview of the recent progress in bio related soil liquefaction mitigation methods. These include both bio-cementation and biogas desaturation. The mechanisms of bio-cementation and biogas desaturation are discussed. Recent up-scaled model tests and field trials are also reviewed. The studies so far have demonstrated that there is a great potential for some of liquefaction mitigation methods to be adopted in practice, although there are still challenges that need to be studied further. These include treatment efficiency, long-term sustainability, and biosafety. A brief introduction to some emerging technologies for liquefaction mitigation such as bio-gelation and use of fungi are also introduced.

Keywords

Microbial geotechnology / Liquefaction mitigation / Bio-cementation / Biogas desaturation

Cite this article

Download citation ▾
Kangda Wang, Shifan Wu, Jian Chu. Mitigation of soil liquefaction using microbial technology: An overview. Biogeotechnics, 2023, 1(1): 100005 DOI:10.1016/j.bgtech.2023.100005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We would like to acknowledge the financial support from National Research Foundation of Singapore under the Grant No. COT-V1-2020-4, and the support from JTC Corporation, Singapore. We also would like to thank the support from the Centre for Urban Solutions, Nanyang Technological University.

References

[1]

K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics In Engineering Practice, John Wiley & Sons, 1996.

[2]

J. Chu, W.K. Leong, Pre-failure strain softening and pre-failure instability of sand: a comparative study, Géotechnique 51 (4) (2001) 311-321.

[3]

D.Y. Xie, Soil Dynamics, Higher Education Press, Beijing, China, 2011.

[4]

Y. Tsukamoto, K. Ishihara, H. Nakazawa, K. Kamada, Y. Huang, Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities, Soils Found. 42 (6) (2002) 93-104.

[5]

Y. Tsukamoto, S. Kawabe, J. Matsumoto, S. Hagiwara, Cyclic resistance of two unsaturated silty sands against soil liquefaction, Soils Found. 54 (6) (2014) 1094-1103.

[6]

Y. Yoshimi, K. Tanaka, K. Tokimatsu, Liquefaction resistance of a partially saturated sand, Soils Found. 29 (3) (1989) 157-162.

[7]

J.K. Mitchell, Soil improvement-state of the art report, Proc. 11th Int Conf. SMFE (1981) 509-565.

[8]

T. Shenthan, R. Nashed, S. Thevanayagam, G.R. Martin, Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction, Earthq. Eng. Eng. Vib. 3 (1) (2004) 39-50.

[9]

A.J. Brennan, S.P.G. Madabhushi, Effectiveness of vertical drains in mitigation of liquefaction, Soil Dyn. Earthq. Eng. 22 (9-12) (2002) 1059-1065.

[10]

J. Chu, S. Varaksin, U. Klotz, P. Mengé, Construction processes. State-of-the-Art- Report, in: M. Shahien, Y. El-Mossallamy (Eds.), 17th International Conf on Soil Mechanics and Geotechnical Engineering, IOS Press BV, Alexandria, Egypt, 2009, pp. 3006-3135.

[11]

R.H. Karol, Chemical grouting and soil stabilization, revised and expanded, Crc Press, 2003.

[12]

S. Kazemian, B.B. Huat, P. Arun, M. Barghchi, A review of stabilization of soft soils by injection of chemical grouting, Aust. J. Basic Appl. Sci. 4 (12) (2010) 5862-5868.

[13]

Grouting Co, Preliminary glossary of terms relating to grouting, J. Geotech. Eng. Div. 106 (7) (1980) 803-815.

[14]

J.K. Mitchell, Res. Pract. Geotech., Eng. (Mitigation of liquefaction potential of silty sands, 2008) 433-451.

[15]

Cubrinovski M. Liquefaction-Induced Damage in The2010-2011 Christchurch (New Zealand) Earthquakes. Proceedings of International Conference on Case Histories in Geotechnical Engineering, Chicago, IL, USA2013.

[16]

Ö. Aydan, R. Ulusay, M. Hamada, D. Beetham, Geotechnical aspects of the 2010 Darfield and 2011 Christchurch earthquakes, New Zealand, and geotechnical damage to structures and lifelines, Bull. Eng. Geol. Environ. 71 (4) (2012) 637-662.

[17]

R.F. Hidayat, T. Kiyota, N. Tada, J. Hayakawa, H. Nawir, Nawir, Reconnaissance on liquefaction-induced flow failure caused by the 2018 M W 7.5 Sulawesi earthquake, Palu, Indonesia, Indonesia, J. Eng. Technol. Sci. 52 (1) (2020) 51-65.

[18]

S. Sassa, T. Takagawa, Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters, Landslides 16 (1) (2018) 195-200.

[19]

L. Van Paassen, M. Harkes, G. Van Zwieten, W. Van der Zon, W. Van der Star, Van, M. Loosdrecht, Scale up of BioGrout: a biological ground reinforcement method, Proc. 17th Int. Conf. Soil Mech. Geotech. Eng. Lansdale IOS Press (2009) 2328-2333.

[20]

J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement, Ecol. Eng. 36 (2) (2010) 197-210.

[21]

L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecol. Eng. 42 (2012) 64-72.

[22]

N.-J. Jiang, K. Soga, M. Kuo, Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures, J. Geotech. Geoenviron. Eng. 143 (3) (2017) 04016100.

[23]

P. Xiao, H. Liu, Y. Xiao, A.W. Stuedlein, T.M. Evans, Liquefaction resistance of bio- cemented calcareous sand, Soil Dyn. Earthq. Eng. 107 (2018) 9-19.

[24]

S. Wu, B. Li, J. Chu, Large-scale model tests of biogrouting for sand and rock, Proc. Inst. Civ. Eng. - Ground Improv. (2019) 1-10.

[25]

J. He, J. Chu, V. Ivanov, Mitigation of liquefaction of saturated sand using biogas, Géotechnique 63 (4) (2013) 267-275.

[26]

K. Wang, J. Chu, S. Wu, J. He, Géotechnique 71 (6) (2021) 521-533.

[27]

S.T. O’Donnell, B.E. Rittmann, E. Kavazanjian, MIDP: liquefaction mitigation via microbial denitrification as a two-stage process. I: desaturation, J. Geotech. Geoenviron. Eng. 143 (2017) 12.

[28]

N.A. Bucci, E. Ghazanfari, H. Lu, Microbially-induced calcite precipitation for sealing rock fractures, Geo-Chic. (2016) 558-567.

[29]

J.T. DeJong, M.B. Fritzges, K. Nüsslein, Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng. 132 (11) (2006) 1381-1392.

[30]

Y. Gao, L. Hang, J. He, J. Chu, Mechanical behaviour of biocemented sands at various treatment levels and relative densities, Acta Geotech. 14 (3) (2018) 697-707.

[31]

M.G. Gomez, J.T. DeJong, C.M. Anderson, Effect of bio-cementation on geophysical and cone penetration measurements in sands, Can. Geotech. J. 55 (11) (2018) 1632-1646.

[32]

Y.Ç. Erşan, Nd Belie, N. Boon, Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment, Biochem. Eng. J. 101 (2015) 108-118.

[33]

E. Kavazanjian, S.T. O’Donnell, N. Hamdan, Biogeotechnical mitigation of earthquake-induced soil liquefaction by denitrification: a two-stage process, Proc. 6th Int. Conf. Earthq. Geotech. Eng., Christch., N. Z. (2015) 20-28.

[34]

L. Wang, L.Av Paassen, E. Kavazanjian, Feasibility study on liquefaction mitigation of fraser river sediments by microbial induced desaturation and precipitation (MIDP), Geo-Congr. (2020) 121-131.

[35]

L.K. Baumgartner, R.P. Reid, C. Dupraz, A.W. Decho, D.H. Buckley, J.R. Spear, et al., Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries, Sediment. Geol. 185 (3-4) (2006) 131-145.

[36]

R. Qiu, B. Zhao, J. Liu, X. Huang, Q. Li, E. Brewer, et al., Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area, J. Hazard Mater. 164 (2-3) (2009) 1310-1315.

[37]

J.L. Pierre, M. Fontecave, R.R. Crichton, Chemistry for an essential biological process: the reduction of ferric iron, Biometals 15 (4) (2002) 341-346.

[38]

Z. Yao, F. Wang, C. Wang, H. Xu, H. Jiang, Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake, Environ. Sci. Pollut. Res Int 26 (15) (2019) 15084-15094.

[39]

J. He, J. Chu, H. Liu, Y. Gao, B. Li, Research advances in biogeotechnologies, Chin. J. Geotech. Eng. 38 (4) (2016) 643-653.

[40]

M.T. González-Muñoz, C. Rodriguez-Navarro, F. Martínez-Ruiz, J.M. Arias, M.L. Merroun, M. Rodriguez-Gallego, Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation 336 Geological Society, London, 2010, pp. 31-50.

[41]

C. Qian, Y. Rui, C. Wang, X. Wang, B. Xue, H. Yi, Bio-mineralization induced by Bacillus mucilaginosus in crack mouth and pore solution of cement-based materials, Mater. Sci. Eng. C. Mater. Biol. Appl. 126 (2021) 112120.

[42]

L.A. van Paassen, C.M. Daza, M. Staal, D.Y. Sorokin, W. van der Zon, M.C.M. van Loosdrecht, Potential soil reinforcement by biological denitrification, Ecol. Eng. 36 (2) (2010) 168-175.

[43]

W.S. Reeburgh, Oceanic methane biogeochemistry, Chem. Rev. 107 (2) (2007) 486-513.

[44]

T. Zhu, C. Paulo, M.L. Merroun, M. Dittrich, Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration, Ecol. Eng. 82 (2015) 459-468.

[45]

N.K. Dhami, M.S. Reddy, A. Mukherjee, Biomineralization of calcium carbonates and their engineered applications: a review, Front Microbiol 4 (2013) 314.

[46]

V. Stabnikov, J. Chu, V. Ivanov, Y. Li, Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand, World J. Microbiol Biotechnol. 29 (8) (2013) 1453-1460.

[47]

M.B. Burbank, T.J. Weaver, T.L. Green, B.C. Williams, R.L. Crawford, Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils, Geomicrobiol. J. 28 (4) (2011) 301-312.

[48]

J.D. Rodriguez-Blanco, S. Shaw, L.G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale 3 (1) (2011) 265-271.

[49]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Microscale visualization of microbial- induced calcium carbonate precipitation processes, J. Geotech. Geoenviron. Eng. 145 (9) (2019) 04019045.

[50]

T. Miyazaki, T. Arii, Y. Shirosaki, Control of crystalline phase and morphology of calcium carbonate by electrolysis: Effects of current and temperature, Ceram. Int. 45 (11) (2019) 14039-14044.

[51]

H. Ghaedamini, M.C. Amiri, Effects of temperature and surfactant concentration on the structure and morphology of calcium carbonate nanoparticles synthesized in a colloidal gas aphrons system, J. Mol. Liq. 282 (2019) 213-220.

[52]

J. Yu, M. Lei, B. Cheng, X. Zhao, Effects of PAA additive and temperature on morphology of calcium carbonate particles, J. Solid State Chem. 177 (3) (2004) 681-689.

[53]

Ç.M. Oral, B. Ercan, Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles, Powder Technol. 339 (2018) 781-788.

[54]

W. Li, W.S. Chen, P.P. Zhou, L. Cao, L.J. Yu, Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase, Colloids Surf. B Biointerfaces 102 (2013) 281-287.

[55]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study, J. Geotech. Geoenviron. Eng. 147 (2021) 6.

[56]

A.A. Qabany, K. Soga, Effect of chemical treatment used in MICP on engineering properties of cemented soils, Géotechnique 63 (4) (2013) 331-339.

[57]

J. He, J. Chu, Y. Gao, H. Liu, Research advances and challenges in biogeotechnologies, Geotech. Res. 6 (2) (2019) 144-155.

[58]

H. Lai, S. Wu, M. Cui, J. Chu, Recent development in biogeotechnology and its engineering applications, Front. Struct. Civ. Eng. 15 (5) (2021) 1073-1096.

[59]

M. Burbank, T. Weaver, R. Lewis, T. Williams, B. Williams, R. Crawford, Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria, J. Geotech. Geoenviron. Eng. 139 (6) (2013) 928-936.

[60]

B.M. Montoya, J.T. Dejong, R.W. Boulanger, Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation, Géotechnique 63 (4) (2013) 302-312.

[61]

Z. Han, X. Cheng, Q. Ma, An experimental study on dynamic response for MICP strengthening liquefiable sands, Earthq. Eng. Eng. Vib. 15 (4) (2016) 673-679.

[62]

X. Zhang, Y. Chen, H. Liu, Z. Zhang, X. Ding, Performance evaluation of a MICP- treated calcareous sandy foundation using shake table tests, Soil Dyn. Earthq. Eng. (2020) 129.

[63]

K.M. Darby, G.L. Hernandez, J.T. DeJong, R.W. Boulanger, M.G. Gomez, D.W. Wilson, Centrifuge Model Testing of Liquefaction Mitigation via Microbially Induced Calcite Precipitation, J. Geotech. Geoenviron. Eng. 145 (2019) 10.

[64]

M. Lee, M.G. Gomez, M.E. Kortbawi, K. Ziotopoulou, Examining the liquefaction resistance of lightly cemented sands using microbially induced calcite precipitation (MICP), Geo-Congr. (2020) 53-64.

[65]

G.A. Riveros, A. Sadrekarimi, Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation, Soil Dyn. Earthq. Eng. (131() (2020).

[66]

L. Van Paassen, Bio-mediated ground improvement: from laboratory experiment to pilot applications. Geo-Frontiers, Advances in Geotechnical Engineering, ASCE, 2011, pp. 4099-4108.

[67]

C.H. Juang, H. Yuan, D.-H. Lee, P.-S. Lin, Simplified cone penetration test-based method for evaluating liquefaction resistance of soils, J. Geotech. Geoenviron. Eng. 129 (1) (2003) 66-80.

[68]

R.E. Moss, R.B. Seed, R.E. Kayen, J.P. Stewart, A. Der Kiureghian, K.O. Cetin, CPT- Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential, J. Geotech. Geoenviron. Eng. 132 (8) (2006) 1032-1051.

[69]

J. Sadoghi Yazdi, F. Kalantary, H. Sadoghi Yazdi, Prediction of liquefaction potential based on CPT up-sampling, Comput. Geosci. 44 (2012) 10-23.

[70]

J.S. Yazdi, R.E.S. Moss, J. Geotech. Nonparametric liquefaction triggering and postliquefaction deformations, Geoenviron. Eng. 143 (2017) 3.

[71]

R.W. Boulanger, I.M. Idriss, CPT-based liquefaction triggering procedure, J. Geotech. Geoenviron. Eng. 142 (2016) 2.

[72]

F. Kalantary, R. Moosazadeh, F. Tabandeh, N. Ganjian, Bio-cementation of loose sand using Staphylococcus sp. IR-103: a field study, Arab. J. Geosci. 15 (2022) 10.

[73]

M. Okamura, Y. Soga, Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand, Soils Found. 46 (5) (2006) 695-700.

[74]

J. He, Mitigation of liquefaction of sand using microbial methods [ph.D. Thesis], Nanyang Technological University, Singapore, 2013.

[75]

J. Yang, S. Savidis, M. Roemer, Evaluating liquefaction strength of partially saturated sand, J. Geotech. Geoenviron. Eng. 130 (9) (2004) 975-979.

[76]

A. Flora, E. Bilotta, A. Chiaradonna, S. Lirer, L. Mele, L. Pingue, A field trial to test the efficiency of induced partial saturation and horizontal drains to mitigate the susceptibility of soils to liquefaction, Bull. Earthq. Eng. 19 (10) (2020) 3835-3864.

[77]

M. Okamura, M. Takebayashi, K. Nishida, N. Fujii, M. Jinguji, T. Imasato, et al., In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation, J. Geotech. Geoenviron. Eng. 137 (7) (2011) 643-652.

[78]

N.P. Marasini, M. Okamura, Air injection to mitigate liquefaction under light structures, Int. J. Phys. Model. Geotech. 15 (3) (2015) 129-140.

[79]

M.K. Yegian, E. Eseller-Bayat, A. Alshawabkeh, S. Ali, J. Geotech. Induced-partial saturation for liquefaction mitigation: experimental investigation, Geoenviron. Eng. 133 (4) (2007) 372-380.

[80]

R. Chen, Y. Chen, H. Liu, K. Zhang, Y. Zhou, S. Xu, et al., In situ desaturation tests by electrolysis for liquefaction mitigation, Can. Geotech. J. 58 (11) (2021) 1744-1756.

[81]

E. Eseller-Bayat, M.K. Yegian, A. Alshawabkeh, S. Gokyer, I: Experimental results, J. Geotech. Liquefaction response of partially saturated sands. Geoenviron. Eng. 139 (6) (2013) 863-871.

[82]

V. Rebata-Landa, J.C. Santamarina, Mechanical effects of biogenic nitrogen gas bubbles in soils, J. Geotech. Geoenviron. Eng. 138 (2) (2012) 128-137.

[83]

J.M. Tiedje, A.J. Sexstone, D.D. Myrold, J.A. Robinson, Denitrification: ecological niches, competition and survival, Antonie Van. Leeuwenhoek 48 (6) (1983) 569-583.

[84]

J. Cole, C. Brown, Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle, FEMS Microbiol. Lett. 7 (2) (1980) 65-72.

[85]

J.M. Barnes, W.A. Apel, K.B. Barrett, Removal of nitrogen oxides from gas streams using biofiltration, J. Hazard. Mater. 41 (2) (1995) 315-326.

[86]

Y.-C. Chung, M.-S. Chung, BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification, Water Sci. Technol. 42 (3-4) (2000) 23-27.

[87]

D. Johns, H. Williams, K. Farrish, S. Wagner, Denitrification and soil characteristics of wetlands created on two mine soils in east Texas, USA, Wetlands 24 (1) (2004) 57-67.

[88]

M.K. Firestone, R.B. Firestone, J.M. Tiedje, Nitrous oxide from soil denitrification: factors controlling its biological production, Science 208 (4445) (1980) 749-751.

[89]

M. Šimek, L. Jı́šová D.W. Hopkins, What is the so-called optimum pH for denitrification in soil? Soil Biol. Biochem. 34 (9) (2002) 1227-1234.

[90]

E. Davidson, P. Matson, P. Vitousek, R. Riley, K. Dunkin, G. Garcia-Mendez, et al., Processes regulating soil emissions of NO and N^ 2O in a Seasonally dry tropical forest, Ecology 74 (1) (1993) 130-139.

[91]

V.P. Pham, Bio-based ground improvement through Microbial Induced Desaturation and Precipitation (MIDP), Delft Univ. Technol. (2017).

[92]

J. He, J. Chu, Undrained Responses of Microbially Desaturated Sand under Monotonic Loading, J. Geotech. Geoenviron. Eng. 140 (2014) 5.

[93]

S.F. Wu, Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method [ph.D. Thesis]. Iowa State University, Ames, Iowa, US, 2015.

[94]

E. Peng, Z. Hou, Y. Sheng, X. Hu, D. Zhang, L. Song, et al., Anti-liquefaction performance of partially saturated sand induced by biogas under high intensity vibration, J. Clean. Prod. (2021) 319.

[95]

K. Wang, Biogas desaturation and bio-gelation methods for mitigation of sand liquefaction, Nanyang Technological University, Singapore, 2020.

[96]

M.H. Baziar, A. Khoshniazpirkoohi, O.E. Amirabadi, Mitigation of liquefaction and lateral spreading by biogas method using shaking table tests and the strain energy approach, Int. J. Geomech. 22 (2022) 12.

[97]

D. Martin, K. Dodds, I.B. Butler, B.T. Ngwenya, Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification, Environ. Sci. Technol. 47 (15) (2013) 8692-8699.

[98]

S.T. O’Donnell, E. Kavazanjian, B.E. Rittmann, MIDP: Liquefaction Mitigation via Microbial Denitrification as a Two-Stage Process. II: MICP, J. Geotech. Geoenviron. Eng. 143 (2017) 12.

[99]

L. Wang, L. van Paassen, Y. Gao, J. He, Y. Gao, D. Kim, Laboratory tests on mitigation of soil liquefaction using microbial induced desaturation and precipitation, Geotech. Test. J. 44 (2021) 2.

[100]

Y. Gao, L. Wang, J. He, J. Ren, Y. Gao, Denitrification-based MICP for cementation of soil: treatment process and mechanical performance, Acta Geotech. 17 (9) (2022) 3799-3815.

[101]

D.M. Moug, K.R. Sorenson, A. Khosravifar, M. Preciado, E. Stallings Young, L. van Paassen, et al., Field Trials of Microbially Induced Desaturation in Low-Plasticity Silt, J. Geotech. Geoenviron. Eng. 148 (2022) 11.

[102]

C. Zeng, L.A. Van Paassen, J.-J. Zheng, Soil stabilization with microbially induced desaturation and precipitation (MIDP) by denitrification: a field study, Acta Geotech. 17 (12) (2022) 5359-5374.

[103]

V.P. Pham, A. Nakano, W.R.L. van der Star, T.J. Heimovaara, L.A. van Paassen, Applying MICP by denitrification in soils: a process analysis, Environ. Geotech. 5 (2) (2018) 79-93.

[104]

J. He, J. Chu, S.-F. Wu, J. Peng, Mitigation of soil liquefaction using microbially induced desaturation, J. Zhejiang Univ. Sci. A. 17 (7) (2016) 577-588.

[105]

J.M. Minto, E. MacLachlan, G. El Mountassir, R.J. Lunn, Rock fracture grouting with microbially induced carbonate precipitation, Water Resour. Res. 52 (11) (2016) 8827-8844.

[106]

L. Cheng, M.A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method, Acta Geotech. 14 (3) (2018) 615-626.

[107]

Y. Xiao, Y. Wang, C.S. Desai, X. Jiang, H. Liu, Strength and deformation responses of biocemented sands using a temperature-controlled method, Int. J. Geomech. 19 (2019) 11.

[108]

L.D. Suits, T.C. Sheahan, M.H. Weil, J.T. DeJong, B.C. Martinez, B.M. Mortensen, Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand, Geotech. Test. J. 35 (2012) 2.

[109]

S. Saneiyan, D. Ntarlagiannis, D.D. Werkema Jr. A. Ustra, J. Appl. Geophysical methods for monitoring soil stabilization processes, Geophy 148 (2018) 234-244.

[110]

X. Chen, V. Achal, Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation, J. Environ. Manag. 264 (2020) 110419.

[111]

L. Cheng, M.A. Shahin, D. Mujah, Influence of key environmental conditions on microbially induced cementation for soil stabilization, J. Geotech. Geoenviron. Eng. 143 (2017) 1.

[112]

M. Sharma, N. Satyam, K.R. Reddy, Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions, Eng. Geol. (2021) 284.

[113]

K. Sorenson, A.M. Preciado, D. Moug, A. Khosravifar, L.V. Paassen, E. Kavazanjian, et al., Field Monitoring of the Persistence of Microbially Induced Desaturation for Mitigation of Earthquake Induced Soil Liquefaction in Silty Soil, Lifelines (2022) 101-113.

[114]

V.P. Pham, L.A. van Paassen, W.R.L. van der Star, T.J. Heimovaara, Evaluating strategies to improve process efficiency of denitrification-based MICP, J. Geotech. Geoenviron. Eng. 144 (8) (2018) 04018049.

[115]

C.A. Hall, L.Av Paassen, S. Kamalzare, D. Parmantier, E. Kavazanjian, Techno- economic assessment of liquefaction mitigation by microbially induced desaturation, Lifelines (2022) 91-100.

[116]

X. Bao, Z. Jin, H. Cui, X. Chen, X. Xie, Soil liquefaction mitigation in geotechnical engineering: an overview of recently developed methods, Soil Dyn. Earthq. Eng. 120 (2019) 273-291.

[117]

M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science 333 (6043) (2011) 712-717.

[118]

S. Lin, H. Zhao, L. Zhu, T. He, S. Chen, C. Gao, et al., Seawater desalination technology and engineering in China: a review, Desalination (2021) 498.

[119]

H.-J. Lai, M.-J. Cui, S.-F. Wu, Y. Yang, J. Chu, Retarding effect of concentration of cementation solution on biocementation of soil, Acta Geotech. 16 (5) (2021) 1457-1472.

[120]

S. Gowthaman, A. Mohsenzadeh, K. Nakashima, S. Kawasaki, Removal of ammonium by-products from the effluent of bio-cementation system through struvite precipitation, Mater. Today.: Proc. (2021).

[121]

X. Yu, J. Chu, Y. Yang, C. Qian, Reduction of ammonia production in the biocementation process for sand using a new biocement, J. Clean. Prod. (2021) 286.

[122]

X. Yu, Q. Zhan, C. Qian, J. Ma, Y. Liang, The optimal formulation of bio-carbonate and bio-magnesium phosphate cement to reduce ammonia emission, J. Clean. Prod. (2019) 240.

[123]

H. Jia, Q. Yuan, Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light, Biodegradation 29 (2) (2018) 105-115.

[124]

N. Hamdan, E. Kavazanjian, Enzyme-induced carbonate mineral precipitation for fugitive dust control, Géotechnique 66 (7) (2016) 546-555.

[125]

Y. Gao, J. He, X. Tang, J. Chu, Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil, Soils Found. 59 (5) (2019) 1631-1637.

[126]

A. Nafisi, S. Safavizadeh, B.M. Montoya, Influence of microbe and enzyme-induced treatments on cemented sand shear response, J. Geotech. Geoenviron. Eng. 145 (2019) 9.

[127]

M.-J. Cui, H.-J. Lai, T. Hoang, J. Chu, One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement, Acta Geotech. 16 (2) (2020) 481-489.

[128]

L. Cheng, Y. Yang, J. Chu, In-situ microbially induced Ca(2+) -alginate polymeric sealant for seepage control in porous materials, Micro Biotechnol. 12 (2) (2019) 324-333.

[129]

K. Wen, Y. Li, W. Huang, C. Armwood, F. Amini, L. Li, Mechanical behaviors of hydrogel-impregnated sand, Constr. Build. Mater. 207 (2019) 174-180.

[130]

K. Wang, J. Chu, S. Wu, J. He, Behaviour of loose sand treated using bio-gelation method, Géotechnique 0 (0) (2022) 1-17.

[131]

K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (1) (2012) 106-126.

[132]

N. Magan, Fungi in Extreme Environments, in: C. P. Kubicek, I.S. Druzhinina (Eds.), Environmental and Microbial Relationships. Berlin, Heidelberg, Springer, Berlin Heidelberg, 2007, pp. 85-103.

[133]

K. Seki, T. Suko, T. Miyazaki, Bioclogging of glass beads by bacteria and fungi, Trans. World Congr. Soil Sci. Symp. (2002).

[134]

M.C. Rillig, D.L. Mummey, Mycorrhizas and soil structure, N. Phytol. 171 (1) (2006) 41-53.

[135]

B.C. Martinez, J.T. DeJong, T.R. Ginn, Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow, Comput. Geotech. 58 (2014) 1-13.

[136]

C. Jin, R. Yu, Z. Shui, Fungi: a neglected candidate for the application of self- healing concrete, Front. Built Environ. (2018) 4.

[137]

V. Lo, J. I-Chun Lai, M. Sunde, Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials, in: A.K. Buell, T.P.J. Knowles (Eds.), Biological and Bio-inspired Nanomaterials: Properties and Assembly Mechanisms. Singapore, Springer, Singapore, 2019, pp. 161-185.

[138]

M.C. Rillig, A connection between fungal hydrophobins and soil water repellency? Pedobiologia 49 (5) (2005) 395-399.

[139]

X. Zhang, X. Fan, C. Wang, X. Yu, A novel method to improve the soil erosion resistance with fungi, Acta Geotech. (2022).

[140]

W. Klinthong, Y.-H. Yang, C.-H. Huang, C.-S. Tan, A review: microalgae and their applications in CO2 capture and renewable energy. aerosol and air quality, Research 15 (2) (2015) 712-742.

[141]

C.R. Heath, B.C.S. Leadbeater, M.E. Callow, Effect of inhibitors on calcium carbonate deposition mediated by freshwater algae, J. Appl. Phycol. 7 (4) (1995) 367-380.

[142]

G. Santomauro, J. Baier, W. Huang, S. Pezold, J. Bill, Formation of calcium carbonate polymorphs induced by living microalgae, J. Biomater. Nanobiotechnol. 03 (04) (2012) 413-420.

[143]

P. Xu, H. Fan, L. Leng, L. Fan, S. Liu, P. Chen, et al., Feasibility of microbially induced carbonate precipitation through a Chlorella-Sporosaricina co-culture system, Algal Res. (2020) 47.

[144]

N. Escoffier, P. Perolo, T. Lambert, J. Rüegg, D. Odermatt, T. Adatte, et al., Whiting events in a large peri‐alpine lake: evidence of a catchment‐scale process, J. Geophys. Res. Biogeosci. 127 (2022) 4.

[145]

W.S. Chai, C.H. Chew, H.S.H. Munawaroh, V. Ashokkumar, C.K. Cheng, Y.-Y.- K. Park, et al., Microalgae and ammonia: a review on inter-relationship, Fuel (2021) 303.

[146]

P.D. Natsi, P.G. Koutsoukos, Calcium carbonate mineralization of microalgae, Biomimetics (2022) 7.

AI Summary AI Mindmap
PDF (4859KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/