A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives

Yu Zhang , Xinlei Hu , Yijie Wang , Ningjun Jiang

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100003

PDF (7977KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100003 DOI: 10.1016/j.bgtech.2023.100003
Review article
research-article

A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives

Author information +
History +
PDF (7977KB)

Abstract

In this review paper, the applications of biomineralization in environmental geotechnics are analyzed. Three environmental geotechnics scenarios, namely heavy metal contamination immobilization and removal, waste and CO2 containment, and recycled use of industrial byproducts, are discussed and evaluated regarding current trends and prospects. The biomineralization process, specifically the Microbially Induced Carbonate Precipitation (MICP) technology, is an effective solution for immobilizing heavy metals through co-precipitation with calcium carbonate, with successful results in cleaning up contaminated soils. The nature of biomineralization enhances earth material strength and decreases permeability, making it suitable for waste and CO2 containment. Additionally, using industrial byproducts in MICP technology can improve the physical, mechanical, and hydraulic properties of earth materials, making it a potential solution for efficient waste utilization. In conclusion, the applications of biomineralization in environmental geotechnics hold great promise for solving various environmental problems. However, further research is needed to better understand the control and consistency of biomineralization processes, the durability of biominerals, the scale of applications, and environmental concerns.

Keywords

Biomineralization / Environmental geotechnics / Heavy metal immobilization / Waste containment / Industrial byproduct utilization

Cite this article

Download citation ▾
Yu Zhang, Xinlei Hu, Yijie Wang, Ningjun Jiang. A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. Biogeotechnics, 2023, 1(1): 100003 DOI:10.1016/j.bgtech.2023.100003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (42007246) and the Fundamental Research Funds for the Central Universities.

References

[1]

V. Achal, X. Pan, Q. Fu, D. Zhang, Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli, J. Hazard. Mater. 201 (2012) 178-184.

[2]

V. Achal, X. Pan, D. Zhang, Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp, Chemosphere 89 (6) (2012) 764-768.

[3]

D.N. Beatty, S.L. Williams, W.V. Srubar, Biomineralized materials for sustainable and durable construction, Annu. Rev. Mater. Res. 52 (2022) 411-439.

[4]

A. Bhattacharya, S.N. Naik, S.K. Khare, Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II), J. Environ. Manag. 215 (2018) 143-152.

[5]

X. Bi, M. Zhang, Y. Wu, Z. Fu, G. Sun, L. Shang, Z. Li, P. Wang, Distribution patterns and sources of heavy metals in soils from an industry undeveloped city in Southern China, Ecotoxicol. Environ. Saf. (2020) 205.

[6]

J. Chen, Y. Xing, Y. Wang, W. Zhang, Z. Guo, W. Su, Application of iron and steel slags in mitigating greenhouse gas emissions: a review, Sci. Total Environ. 844 (2022).

[7]

M. Chen, S. Gowthaman, K. Nakashima, S. Komatsu, S. Kawasaki, Experimental study on sand stabilization using bio-cementation with wastepaper fiber integration, Materials 14 (18) (2021).

[8]

Y. Chen, A fundamental theory of environmental geotechnics and its application, Chin. J. Geotech. Eng. 36 (1) (2014) 1-46.

[9]

J. Cosmidis, K. Benzerara, Why do microbes make minerals, Comptes Rendus Geosci. 354 (1) (2022).

[10]

A.B. Cunningham, R. Gerlach, L. Spangler, A.C. Mitchell, S. Parks, A. Phillips, Reducing the risk of well bore leakage of CO2 using engineered biomineralization barriers, Energy Procedia 4 (2011) 5178-5185.

[11]

J.T. Dejong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement, Ecol. Eng. 36 (2) (2010) 197-210.

[12]

J.T. Dejong, K. Soga, E. Kavazanjian, S.E. Burns, L.A. Van Paassen, A. Al Qabany, A. Aydilek, S.S. Bang, M. Burbank, L.F. Caslake, C.Y. Chen, X. Cheng, J. Chu, S. Ciurli, A. Esnault-Filet, S. Fauriel, N. Hamdan, T. Hata, Y. Inagaki, S. Jefferis, M. Kuo, L. Laloui, J. Larrahondo, D. a C. Manning, B. Martinez, B.M. Montoya, D.C. Nelson, A. Palomino, P. Renforth, J.C. Santamarina, E.A. Seagren, B. Tanyu, M. Tsesarsky, T. Weaver, Biogeochemical processes and geotechnical applications: progress, opportunities and challenges, Geotechnique 63 (4) (2013) 287-301.

[13]

N.K. Dhami, A. Mukherjee, M.S. Reddy, Viability of calcifying bacterial formulations in fly ash for applications in building materials, J. Ind. Microbiol. Biotechnol. 40 (12) (2013) 1403-1413.

[14]

S. Dupraz, B. Ménez, P. Gouze, R. Leprovost, P. Bénézeth, O.S. Pokrovsky, F. Guyot, Experimental approach of CO2 biomineralization in deep saline aquifers, Chem. Geol. 265 (1-2) (2009) 54-62.

[15]

Fei, F. (2019) A Summary of the Achievements and Development of Environmental Engineering Construction in China. In 2nd International Conference on Green Energy and Sustainable Development (GESD).), Chongqing, PEOPLES R CHINA, vol. 2122.

[16]

Y. Fujita, J.L. Taylor, L.M. Wendt, D.W. Reed, R.W. Smith, Evaluating the potential of native ureolytic microbes to remediate a Sr-90 contaminated environment, Environ. Sci. Technol. 44 (19) (2010) 7652-7658.

[17]

W. Gwenzi, Eds.), Carbon Sequestration via Biomineralization: Processes, Applications and Future Directions, Sustainable Agriculture Reviews 37: Carbon Sequestration,in:Inamuddin, A.M. Asiri, E. Lichtfouse (Introduction and Biochemical Methods, Vol. 1 Springer International Publishing, Cham, 2019, pp. 93-106 Sustainable Agriculture Reviews 37: Carbon Sequestration.

[18]

N. Hao, Y. Song, Z. Wang, C. He, S. Ruan, Utilization of silt, sludge, and industrial waste residues in building materials: a review, J. Appl. Biomater. Funct. Mater. (2022) 20.

[19]

R.S. Haszeldine, S. Flude, G. Johnson, V. Scott, Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376 (2119) (2018) 20160447.

[20]

N.-J. Jiang, R. Liu, Y.-J. Du, Y.-Z. Bi, Microbial induced carbonate precipitation for immobilizing Pb contaminants: toxic effects on bacterial activity and immobilization efficiency, Sci. Total Environ. 672 (2019) 722-731.

[21]

N.-J. Jiang, Y.-J. Wang, J. Chu, S. Kawasaki, C.-S. Tang, L. Cheng, Y.-J. Du, B.S. Shashank, D.N. Singh, X.-L. Han, Y.-Z. Wang, Bio-mediated soil improvement: an introspection into processes, materials, characterization and applications, Soil Use Manag. 38 (1) (2022) 68-93.

[22]

C. Jin, H. Liu, M. Guo, Y. Wang, J. Zhu, Experimental study on tailings cementation by MICP technique with immersion curing, Plos One 17 (8) (2022) e0272281- e0272281.

[23]

P.M. Johnston, B.C. O'kelly, Importance of environmental geotechnics, Environ. Geotech. 3 (6) (2016) 356-358.

[24]

S. Joshi, S. Goyal, M.S. Reddy, Influence of biogenic treatment in improving the durability properties of waste amended concrete: a review, Constr. Build. Mater. 263 (2020).

[25]

N. Kumar, P. Chaurand, J. Rose, L. Diels, L. Bastiaens, Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment, Chem. Eng. J. 260 (2015) 83-89.

[26]

D. Landa-Marbán, S. Tveit, K. Kumar, S.E. Gasda, Practical approaches to study microbially induced calcite precipitation at the field scale, Int. J. Greenh. Gas. Control 106 (2021) 103256.

[27]

M. Li, X.H. Cheng, H.X. Guo, Heavy metal removal by biomineralization of urease producing bacteria isolated from soil, Int. Biodeterior. Biodegrad. 76 (2013) 81-85.

[28]

X. Li, Y. Wang, J. Tang, K. Li, Removal behavior of heavy metals from aqueous solutions via microbially induced carbonate precipitation driven by acclimatized sporosarcina pasteurii, Appl. Sci. 12 (19) (2022).

[29]

Z. Liao, S. Wu, H. Xie, F. Chen, Y. Yang, R. Zhu, Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: mobilization or immobilization? J. Hazard. Mater. 443 (2023).

[30]

K. Liu, J. Ouyang, D. Sun, N. Jiang, A. Wang, N. Huang, P. Liang, Enhancement mechanism of different recycled fine aggregates by microbial induced carbonate precipitation, J. Clean. Prod. 379 (2022).

[31]

N. Liu, G.M. Bond, A. Abel, B.J. Mcpherson, J. Stringer, Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines, Fuel Process. Technol. 86 (14-15) (2005) 1615-1625.

[32]

S. Liu, L. Zhan, L. Hu, Y. Du, Environmental geotechnics: state-of-the-art of theory, testing and application to practice, China Civ. Eng. J. 49 (3) (2016) 6-30.

[33]

A. Lu, Y. Yuan, Q. Zhang, T. Liu, Research progress of new building materials based on industrial solid waste residue, Mater. China 37 (3) (2018) 224-230.

[34]

P. Lu, S. Liu, H. Ai, Research progress of calcinating cement clinker with solid waste, Bull. Chin. Ceram. Soc. 33 (1) (2014) 112-116 138.

[35]

A.C. Mitchell, K. Dideriksen, L.H. Spangler, A.B. Cunningham, R. Gerlach, Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping, Environ. Sci. Technol. 44 (13) (2010) 5270-5276.

[36]

J.K. Mitchell, J.C. Santamarina, Biological considerations in geotechnical engineering, J. Geotech. Geoenviron. Eng. 131 (10) (2005) 1222-1233.

[37]

J.A. Ohan, S. Saneiyan, J. Lee, A.W. Bartlow, D. Ntarlagiannis, S.E. Burns, F.S. Colwell, Microbial and geochemical dynamics of an aquifer stimulated for microbial induced calcite precipitation (MICP), Front. Microbiol. 11 (2020).

[38]

K. Osinubi, A. Eberemu, T. Ijimdiya, S. Yakubu, E. Gadzama, J. Sani, P. Yohanna, Review of the use of microorganisms in geotechnical engineering applications, SN Appl. Sci. 2 (2020) 1-19.

[39]

K. Osinubi, A. Eberemu, T. Ijimdiya, P. Yohanna, Interaction of landfill leachate with compacted lateritic soil treated with bacillus coagulans using microbial-induced calcite precipitation approach, J. Hazard., Toxic., Radioact. Waste 24 (1) (2020) 04019024.

[40]

Osinubi, K., Yohanna, P., Eberemu, A., Ijimdiya, T. (2019a) Evaluation of hydraulic conductivity of lateritic soil treated with Bacillus coagulans for use in waste containment applications. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3: Towards a Sustainable Geoenvironment 8th.) Springer, pp. 401-409.

[41]

Osinubi, K.J., Sani, J.E., Eberemu, A.O., Ijimdiya, T.S., Yakubu, S.E. (2019b) Unconfined compressive strength of Bacillus pumilus treated lateritic soil. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3: Towards a Sustainable Geoenvironment 8th.) Springer, pp. 410-418.

[42]

V. Pande, S.C. Pandey, D. Sati, P. Bhatt, M. Samant, Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem, Front. Microbiol. 13 (2022).

[43]

C. Qian, A. Wang, X. Wang, Advances of soil improvement with bio-grouting, Rock. Soil Mech. 36 (6) (2015) 1537-1548.

[44]

S. Qiao, G. Zeng, X. Wang, C. Dai, M. Sheng, Q. Chen, F. Xu, H. Xu, Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration, Chemosphere 274 (2021).

[45]

R. Qiu, H. Tong, X. Fang, Y. Liao, Y. Li, Analysis of strength characteristics of carbon fiber-reinforced microbial solidified sand, Adv. Mech. Eng. 11 (11) (2019).

[46]

A. Rajasekar, S. Wilkinson, C.K.S. Moy, MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review, Environ. Sci. Ecotechnol. 6 (2021).

[47]

R. Ramanan, K. Kannan, S.D. Sivanesan, S. Mudliar, S. Kaur, A.K. Tripathi, T. Chakrabarti, Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii, World J. Microbiol. Biotechnol. 25 (2009) 981-987.

[48]

B. Ren, Y.L. Zhao, H.Y. Bai, S.C. Kang, T.T. Zhang, S.X. Song, Eco-friendly geopolymer prepared from solid wastes: a critical review, Chemosphere 267 (2021).

[49]

K. Rowshanbakht, M. Khamehchiyan, R.H. Sajedi, M.R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng. 89 (2016) 49-55.

[50]

B. Shan, R. Hao, J. Zhang, J. Li, Y. Ye, A. Lu, Microbial remediation mechanisms and applications for lead-contaminated environments, World J. Microbiol. Biotechnol. 39 (2) (2023).

[51]

M. Sharma, N. Satyam, K.R. Reddy, Strength enhancement and lead immobilization of sand using consortia of bacteria and blue-green algae, J. Hazard. Toxic. Radioact. Waste 24 (4) (2020).

[52]

M. Sharma, N. Satyam, K.R. Reddy, M. Chrysochoou, Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique, Environ. Sci. Pollut. Res. 29 (34) (2022) 51827-51846.

[53]

A.P. Silva Dos Santos, N.C. Consoli, B.A. Baudet, The mechanics of fibre-reinforced sand, Geotechnique 60 (10) (2010) 791-799.

[54]

K.S. Smith, J.G. Ferry, Prokaryotic carbonic anhydrases, FEMS Microbiol. Rev. 24 (4) (2000) 335-366.

[55]

S. Sreedeep, Vision ahead for environmental geotechnics, Environ. Geotech. 2 (5) (2015) 255-256.

[56]

C.-S. Tang, B. Shi, L.-Z. Zhao, Interfacial shear strength of fiber reinforced soil, Geotext. Geomembr. 28 (1) (2010) 54-62.

[57]

C.-S. Tang, L.-Y. Yin, N.-J. Jiang, C. Zhu, H. Zeng, H. Li, B. Shi, Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review, Environ. Earth Sci. 79 (5) (2020).

[58]

Y. Tian, Z. Li, S. Wang, Y. Zhou, D. Li, L. Fu, Application of MICP in Water Stability and Hydraulic Erosion Control of Phosphogypsum Material in Slope, Appl. Sci. -Basel 12 (4) (2022).

[59]

D.J. Tobler, E. Maclachlan, V.R. Phoenix, Microbially mediated plugging of porous media and the impact of differing injection strategies, Ecol. Eng. 42 (2012) 270-278.

[60]

D. Tong, Q. Zhang, Y. Zheng, K. Caldeira, C. Shearer, C. Hong, Y. Qin, S.J. Davis, Committed emissions from existing energy infrastructure jeopardize 1.5C climate target, Nature 572 (7769) (2019) 373-377.

[61]

C. Turan, A.A. Javadi, R. Vinai, R.B. Zali, Geotechnical characteristics of fine- grained soils stabilized with Fly Ash, a review, Sustainability 14 (24) (2022).

[62]

S. Upadhyay, A. Sinha, Role of microorganisms in Permeable Reactive Bio-Barriers (PRBBs) for environmental clean-up: a review, Glob. NEST J. 20 (2) (2018) 269-280.

[63]

S. Verma, P. Bhatt, A. Verma, H. Mudila, P. Prasher, E.R. Rene, Microbial technologies for heavy metal remediation: effect of process conditions and current practices, Clean. Technol. Environ. Policy (2021).

[64]

Y. Wang, J. Qin, S. Zhou, X. Lin, L. Ye, C. Song, Y. Yan, Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion, Water Res. 73 (2015) 252-264.

[65]

K. Waybrant, C. Ptacek, D. Blowes, Treatment of mine drainage using permeable reactive barriers: column experiments, Environ. Sci. Technol. 36 (6) (2002) 1349-1356.

[66]

B. Wei, L. Yang, A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchem. J. 94 (2) (2010) 99-107.

[67]

Weiner S. & Dove, P.M. (2003) An overview of biomineralization processes and the problem of the vital effect. In Biomineralization. (Dove, P. M., Deyoreo, J. J., andWeiner, S. (eds)), vol. 54, pp. 1-29.

[68]

R.T. Wilkin, R.W. Puls, G.W. Sewell, Long‐term performance of permeable reactive barriers using zero‐valent iron: Geochemical and microbiological effects, Groundwater 41 (4) (2003) 493-503.

[69]

R. Wu, F. Yao, X. Li, C. Shi, X. Zang, X. Shu, H. Liu, W. Zhang, Manganese pollution and its remediation: a review of biological removal and promising combination strategies, Microorganisms 10 (12) (2022).

[70]

Y. Xiao, X. He, T.M. Evans, A.W. Stuedlein, H.L. Liu, Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand, J. Geotech. Geoenviron. Eng. 145 (9) (2019).

[71]

Y. Xiao, X. He, M. Zaman, G.L. Ma, C. Zhao, Review of Strength Improvements of Biocemented Soils, Int. J. Geomech. 22 (11) (2022).

[72]

Q. Xue, L. Zhan, L. Hu, Y. Du, Environmental geotechnics:state-of-the-art of theory,testing and application to practice, China Civ. Eng. J. 53 (3) (2020) 80-94.

[73]

Z.-F. Xue, W.-C. Cheng, L. Wang, W. Hu, Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation, J. Hazard. Mater. 426 (2022).

[74]

Z.-F. Xue, W.-C. Cheng, L. Wang, Y.-X. Xie, Catalyzing urea hydrolysis using two- step microbial-induced carbonate precipitation for copper immobilization: Perspective of pH regulation, Front. Microbiol. 13 (2022).

[75]

R. Yadav, N. Labhsetwar, S. Kotwal, S. Rayalu, Single enzyme nanoparticle for biomimetic CO 2 sequestration, J. Nanopart. Res. 13 (2011) 263-271.

[76]

S.S. Yao, B.A. Jin, Z.M. Liu, C.Y. Shao, R.B. Zhao, X.Y. Wang, R.K. Tang, Biomineralization: from material tactics to biological strategy, Adv. Mater. 29 (14) (2017).

[77]

J. Zhang, P. Su, L. Li, Bioremediation of stainless steel pickling sludge through microbially induced carbonate precipitation, Chemosphere (2022) 298.

[78]

J. Zhang, P. Su, K. Wen, Y. Li, L. Li, Mechanical performance and environmental effect of coal Fly Ash on MICP-induced soil improvement, KSCE J. Civ. Eng. 24 (11) (2020) 3189-3201.

[79]

P. Zhang, X.-Q. Liu, L.-Y. Yang, H.-Z.-Y. Sheng, A.-Q. Qian, T. Fan, Immobilization of Cd2+ and Pb2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1, Environ. Sci. Pollut. Res. (2022).

[80]

Y. Zhao, C. Fan, F. Ge, X. Cheng, P. Liu, Enhancing strength of MICP-treated sand with scrap of activated carbon-fiber felt, J. Mater. Civ. Eng. 32 (4) (2020).

[81]

Y. Zheng, C. Xiao, R. Chi, Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review, World J. Microbiol. Biotechnol. 37 (12) (2021).

AI Summary AI Mindmap
PDF (7977KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/