Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review

Tianzheng Fu , Alexandra Clarà Saracho , Stuart Kenneth Haigh

Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) : 100002

PDF (8304KB)
Biogeotechnics ›› 2023, Vol. 1 ›› Issue (1) :100002 DOI: 10.1016/j.bgtech.2023.100002
Review article
research-article

Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review

Author information +
History +
PDF (8304KB)

Abstract

Geotechnical research has been yearning for revolutionary innovations that could bring breakthroughs to conventional practices, especially at a time when energy efficiency and environmental sustainability are of unprecedented importance in the field. Recently, exciting opportunities emerged utilising microorganisms, the ubiquitous soil dwellers, to provide solutions to many geotechnical problems, prompting the development of the new, multidisciplinary subject of biogeotechnics. Research interest has been centred on the use of microbially induced carbonate precipitation (MICP) to improve the engineering properties of soils. The present work aims to comprehensively review the progress of more than a decade of research on the application of MICP in soil strengthening. Through elucidation of underlying mechanisms, compilation and interpretation of experimental findings, and in-depth discussion on pivotal aspects, with reference made to key published studies, a holistic picture of the state of the art of MICP-based soil strengthening is drawn. Current knowledge gaps are identified, and suggestions for future research are given, along with the opportunities and challenges that lie ahead of practically implementing this technique in real-world geotechnical applications.

Keywords

Biogeotechnics / Microbially induced carbonate precipitation / Bio-cementation / Soil strengthening

Cite this article

Download citation ▾
Tianzheng Fu, Alexandra Clarà Saracho, Stuart Kenneth Haigh. Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 2023, 1(1): 100002 DOI:10.1016/j.bgtech.2023.100002

登录浏览全文

4963

注册一个新账户 忘记密码

Statements and Declarations

The authors declare that they have no competing financial or non-financial interests that are relevant to the present work.

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant (reference number: EP/S02302X/1) for the University of Cambridge Centre for Doctoral Training in Future Infrastructure and Built Environment.

References

[1]

J. Abu-Ashour, D.M. Joy, H. Lee, et al., Transport of microorganisms through soil, Water Air Soil Pollut 75 (1994) 141-158, https://doi.org/10.1007/BF01100406

[2]

V. Achal, A. Mukherjee, A review of microbial precipitation for sustainable construction, Constr. Build. Mater 93 (2015) 1224-1235, https://doi.org/10.1016/j.conbuildmat.2015.04.051

[3]

V. Achal, X. Pan, Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2, Appl. Biochem. Biotechnol. 173 (2014) 307-317, https://doi.org/10.1007/s12010-014-0842-1

[4]

V. Achal, X. Pan, D. Zhang, Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp, Chemosphere 89 (2012) 764-768, https://doi.org/10.1016/j.chemosphere.2012.06.064

[5]

V. Achal, X. Pan, D. Zhang, Q. Fu, Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation, J. Microbiol. Biotechnol. 22 (2012) 244-247, https://doi.org/10.4014/jmb.1108.08033

[6]

L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003) 959-970, https://doi.org/10.1002/adma.200300381

[7]

I. Ahenkorah, M.M. Rahman, M.R. Karim, P.R. Teasdale, A comparison of mechanical responses for microbial andenzyme-induced cemented Sand, Géotechnique Lett. 10 (2020) 559-567, https://doi.org/10.1680/jgele.20.00061

[8]

M. Al Imran, S. Gowthaman, K. Nakashima, S. Kawasaki, The influence of the addition of plant-based natural fibers (Jute) on biocemented sand using MICP method, Materials 13 (2020) 4198, https://doi.org/10.3390/MA13184198

[9]

A. Al Qabany, Microbial Carbonate Precipitation in Soils, University of Cambridge, 2011.

[10]

A. Al Qabany, K. Soga, Effect of chemical treatment used in MICP on engineering properties of cemented soils, Géotechnique 63 (2013) 331-339, https://doi.org/10.1680/bcmpge.60531.010

[11]

A. Al Qabany, K. Soga, J.C. Santamarina, Factors affecting efficiency of microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng. 138 (2012) 992-1001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

[12]

P. Anbu, C.H. Kang, Y.J. Shin, J.S. So, Formations of calcium carbonate minerals by bacteria and its multiple applications, Springerplus 5 (2016) 1-26, https://doi.org/10.1186/s40064-016-1869-2

[13]

L.G. Arboleda-Monsalve, D.G. Zapata-Medina, D.I. Galeano-Parra, Compressibility of biocemented loose sands under constant rate of strain, loading, and pseudo K0- triaxial conditions, Soils Found. 59 (2019) 1440-1455, https://doi.org/10.1016/j.sandf.2019.06.008

[14]

K.L. Bachmeier, A.E. Williams, J.R. Warmington, S.S. Bang, Urease activity in microbiologically-induced calcite precipitation, J. Biotechnol. 93 (2002) 171-181, https://doi.org/10.1016/S0168-1656(01)00393-5

[15]

K. Benzerara, J. Miot, G. Morin, et al., Significance, mechanisms and environmental implications of microbial biomineralization, Comptes R. Geosci. 343 (2011) 160-167, https://doi.org/10.1016/j.crte.2010.09.002

[16]

D. Bernardi, J.T. DeJong, B.M. Montoya, B.C. Martinez, Bio-bricks: Biologically cemented sandstone bricks, Constr. Build. Mater. 55 (2014) 462-469, https://doi.org/10.1016/j.conbuildmat.2014.01.019

[17]

E. Boquet, A. Boronat, A. Ramos-Cormenzana, Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon, Nature 246 (1973) 527-529, https://doi.org/10.1038/246527a0

[18]

T. Bosak, D.K. Newman, Microbial kinetic controls on calcite morphology in supersaturated solutions, J. Sediment. Res. 75 (2005) 190-199, https://doi.org/10.2110/jsr.2005.015

[19]

S. Botusharova, D. Gardner, M. Harbottle, Augmenting microbially induced carbonate precipitation of soil with the capability to self-heal, J. Geotech. Geoenviron. Eng. 146 (2020) 04020010, https://doi.org/10.1061/(asce)gt.1943-5606.0002214

[20]

O. Braissant, G. Cailleau, C. Dupraz, E.P. Verrecchia, Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids, J. Sediment. Res. 73 (2003) 485-490, https://doi.org/10.1306/111302730485

[21]

C. Bu, X. Lu, D. Zhu, et al., Soil improvement by microbially induced calcite precipitation (MICP): a review about mineralization mechanism, factors, and soil properties, Arabian J. Geosci. 15 (2022) 863, https://doi.org/10.1007/s12517-022-10012-w

[22]

M.B. Burbank, T.J. Weaver, T.L. Green, et al., Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils, Geomicrobiol. J. 28 (2011) 301-312, https://doi.org/10.1080/01490451.2010.499929

[23]

M.B. Burbank, T.J. Weaver, R. Lewis, et al., Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria, J. Geotech. Geoenviron. Eng. 139 (2013) 928-936, https://doi.org/10.1061/(asce)gt.1943-5606.0000781

[24]

H. Canakci, W. Sidik, I. Halil Kilic, Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil, Soils Found. 55 (2015) 1211-1221, https://doi.org/10.1016/j.sandf.2015.09.020

[25]

R. Cardoso, R. Pedreira, S.O.D. Duarte, G.A. Monteiro, About calcium carbonate precipitation on sand biocementation, Eng. Geol 271 (2020) 105612, https://doi.org/10.1016/j.enggeo.2020.105612

[26]

C.C. Casas, C.J. Schaschke, J.C. Akunna, M.E. Jorat, Dissolution experiments on dolerite quarry fines at low liquid-to-solid ratio: A source of calcium for MICP, Environ. Geotech. 9 (2021) 331-339, https://doi.org/10.1680/jenge.19.00067

[27]

S. Castanier, G. Le Métayer-Levrel, J.P. Perthuisot, Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view, Sediment. Geol 126 (1999) 9-23, https://doi.org/10.1016/S0037-0738(99)00028-7

[28]

L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecol. Eng 42 (2012) 64-72, https://doi.org/10.1016/j.ecoleng.2012.01.013

[29]

L. Cheng, R. Cord-Ruwisch, Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation, Geomicrobiol. J. 31 (2014) 396-406, https://doi.org/10.1080/01490451.2013.836579

[30]

L. Cheng, R. Cord-Ruwisch, Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture, J. Ind. Microbiol. Biotechnol. 40 (2013) 1095-1104, https://doi.org/10.1007/s10295-013-1310-6

[31]

L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Can. Geotech. J. 50 (2013) 81-90, https://doi.org/10.1139/cgj-2012-0023

[32]

L. Cheng, M.A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method, Acta Geotech 14 (2019) 615-626, https://doi.org/10.1007/s11440-018-0738-2

[33]

L. Cheng, M.A. Shahin, R. Cord-Ruwisch, Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments, Géotechnique 64 (2014) 1010-1013, https://doi.org/10.1680/geot.14.T.025

[34]

L. Cheng, M.A. Shahin, D. Mujah, Influence of key environmental conditions on microbially induced cementation for soil stabilization, J. Geotech. Geoenviron. Eng. 143 (2017) 04016083, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

[35]

S.G. Choi, I. Chang, M. Lee, et al., Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers, Constr. Build. Mater 246 (2020) 118415, https://doi.org/10.1016/j.conbuildmat.2020.118415

[36]

S.G. Choi, J. Chu, R.C. Brown, et al., Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass, ACS Sustain. Chem. Eng 5 (2017) 5183-5190, https://doi.org/10.1021/acssuschemeng.7b00521

[37]

S.G. Choi, K. Wang, J. Chu, Properties of biocemented, fiber reinforced sand, Constr. Build. Mater 120 (2016) 623-629, https://doi.org/10.1016/j.conbuildmat.2016.05.124

[38]

S.G. Choi, S. Wu, J. Chu, Biocementation for sand using an eggshell as calcium source, J. Geotech. Geoenviron. Eng. 142 (2016) 06016010, https://doi.org/10.1061/(asce)gt.1943-5606.0001534

[39]

C.W. Chou, E.A. Seagren, A.H. Aydilek, M. Lai, J. Geotech. Biocalcification of sand through ureolysis, Geoenviron. Eng. 137 (2011) 1179-1189, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532

[40]

J. Chu, V. Ivanov, M. Naeimi, et al., Optimization of calcium-based bioclogging and biocementation of sand, Acta Geotech 9 (2014) 277-285, https://doi.org/10.1007/s11440-013-0278-8

[41]

J. Chu, V. Ivanov, V. Stabnikov, B. Li, Microbial method for construction of an aquaculture pond in sand, Géotechnique 63 (2013) 871-875, https://doi.org/10.1680/geot.SIP13.P.007

[42]

S. Ciurli, C. Marzadori, S. Benini, et al., Urease from the soil bacterium Bacillus pasteurii: Immobilization on Ca- polygalacturonate, Soil Biol. Biochem 28 (1996) 811-817, https://doi.org/10.1016/0038-0717(96)00020-X

[43]

A. Clarà Saracho, S.K. Haigh, M. Ehsan Jorat, Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand, Géotechnique 71 (2021) 1135-1149, https://doi.org/10.1680/jgeot.19.p.350

[44]

A. Clarà Saracho, S.K. Haigh, T. Hata, et al., Characterisation of CaCO 3 phases during strain-specific ureolytic precipitation, Sci. Rep 10 (2020) 10168, https://doi.org/10.1038/s41598-020-66831-y

[45]

A. Clarà Saracho, L. Lucherini, M. Hirsch, et al., Controlling the calcium carbonate microstructure of engineered living building materials, J. Mater. Chem. A Mater. 9 (2021) 24438-24451, https://doi.org/10.1039/d1ta03990c

[46]

T. Cuccovillo, M.R. Coop, On the mechanics of structured sands, Géotechnique 49 (1999) 741-760, https://doi.org/10.1680/geot.1999.49.6.741

[47]

M. Cui, J. Zheng, R. Zhang, et al., Influence of cementation level on the strength behaviour of bio-cemented sand, Acta Geotech 12 (2017) 971-986, https://doi.org/10.1007/s11440-017-0574-9

[48]

M.-J. Cui, J.-J. Zheng, J. Chu, et al., Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand, Acta Geotech 16 (2021) 1377-1389, https://doi.org/10.1007/s11440-020-01099-0

[49]

A.B. Cunningham, A.J. Phillips, E. Troyer, et al., Wellbore leakage mitigation using engineered biomineralization, Energy Procedia 63 (2014) 4612-4619, https://doi.org/10.1016/j.egypro.2014.11.494

[50]

M.O. Cuthbert, M.S. Riley, S. Handley-Sidhu, et al., Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation, Ecol. Eng. 41 (2012) 32-40, https://doi.org/10.1016/j.ecoleng.2012.01.008

[51]

A. Dadda, C. Geindreau, F. Emeriault, et al., Characterization of contact properties in biocemented sand using 3D X-ray micro-tomography, Acta Geotech. 14 (2019) 597-613, https://doi.org/10.1007/s11440-018-0744-4

[52]

A. Dadda, C. Geindreau, F. Emeriault, et al., Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography, Acta Geotech 14 (2017) 597-613, https://doi.org/10.1007/s11440-017-0578-5

[53]

N. De Belie, E. Gruyaert, A. Al-Tabbaa, et al., A review of self-healing concrete for damage management of structures, Adv. Mater. Interfaces 5 (2018) 1800074, https://doi.org/10.1002/admi.201800074

[54]

W. De Muynck, N. De Belie, W. Verstraete, Microbial carbonate precipitation in construction materials: A review, Ecol. Eng 36 (2010) 118-136, https://doi.org/10.1016/j.ecoleng.2009.02.006

[55]

J.J. De Yoreo, P.G. Vekilov, Principles of Crystal Nucleation and Growth, Biomineralization, 2018, pp. 57-93.

[56]

J.T. DeJong, M.B. Fritzges, K. Nüsslein, Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng. 132 (2006) 1381-1392, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

[57]

J.T. DeJong, B.C. Martinez, T.R. Ginn, et al., Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications, Geotech. Test. J. 37 (2014) 424-435, https://doi.org/10.1520/GTJ20130089

[58]

DeJong, J.T., Martinez, B.C., Mortensen, B.M., et al. (2009) Upscaling of bio- mediated soil improvement. In:Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering. pp 2300-2303.

[59]

J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement, Ecol. Eng 36 (2010) 197-210, https://doi.org/10.1016/j.ecoleng.2008.12.029

[60]

J.T. DeJong, K. Soga, E. Kavazanjian, et al., Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges, Géotechnique 63 (2013) 287-301, https://doi.org/10.1680/geot.SIP13.P.017

[61]

B.V. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci 43 (1993) 30-59, https://doi.org/10.1016/0079-6816(93)90013-L

[62]

N.K. Dhami, A. Mukherjee, M.S. Reddy, Micrographical, minerological and nano- mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria, Ecol. Eng 94 (2016) 443-454, https://doi.org/10.1016/j.ecoleng.2016.06.013

[63]

N.K. Dhami, M.S. Reddy, A. Mukherjee, Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites, J. Microbiol. Biotechnol. 23 (2013) 707-714, https://doi.org/10.4014/jmb.1212.11087

[64]

N.K. Dhami, M.S. Reddy, M.S. Mukherjee, Biomineralization of calcium carbonates and their engineered applications: A review, Front. Microbiol 4 (2013) 1-13, https://doi.org/10.3389/fmicb.2013.00314

[65]

R. Dikshit, A. Dey, N. Gupta, et al., Space bricks: From LSS to machinable structures via MICP, Ceram. Int 47 (2021) 14892-14898, https://doi.org/10.1016/j.ceramint.2020.07.309

[66]

R. Dikshit, A. Jain, A. Dey, A. Kumar, Microbially induced calcite precipitation using Bacillus velezensis with guar gum, PLoS One 15 (2020) e0236745, https://doi.org/10.1371/journal.pone.0236745

[67]

M. Dittrich, S. Sibler, Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy, J. Colloid Interface Sci. 286 (2005) 487-495, https://doi.org/10.1016/j.jcis.2005.01.029

[68]

S. Douglas, T.J. Beveridge, Mineral formation by bacteria in natural microbial communities, FEMS Microbiol. Ecol 26 (1998) 79-88, https://doi.org/10.1016/S0168-6496(98)00027-0

[69]

L. Duo, T. Kan-liang, Z. Hui-li, et al., Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation, Constr. Build. Mater. 172 (2018) 251-262, https://doi.org/10.1016/j.conbuildmat.2018.03.255

[70]

S. Dupraz, M. Parmentier, B. Ménez, F. Guyot, Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers, Chem. Geol. 265 (2009) 44-53, https://doi.org/10.1016/j.chemgeo.2009.05.003

[71]

H.L. Ehrlich, How microbes influence mineral growth and dissolution, Chem. Geol 132 (1996) 5-9, https://doi.org/10.1016/s0009-2541(96)00035-6

[72]

C. Ercole, P. Bozzelli, F. Altieri, et al., Calcium carbonate mineralization: Involvement of extracellular polymeric materials isolated from calcifying bacteria, Microsc. Microanal. 18 (2012) 829-839, https://doi.org/10.1017/S1431927612000426

[73]

C. Ercole, P. Cacchio, A.L. Botta, et al., Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides, Microsc. Microanal. 13 (2007) 42-50, https://doi.org/10.1017/S1431927607070122

[74]

X. Fang, Y. Yang, Z. Chen, et al., Influence of fiber content and length on engineering properties of MICP-treated coral sand, Geomicrobiol. J 37 (2020) 582-594, https://doi.org/10.1080/01490451.2020.1743392

[75]

K. Feng, B.M. Montoya, Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading, J. Geotech. Geoenviron. Eng. 142 (2016) 04015057, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379

[76]

M.R. Ferrer, J. Quevedo-Sarmiento, M.A. Rivadeneyra, et al., Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations, Curr. Microbiol 17 (1988) 221-227, https://doi.org/10.1007/BF01589456

[77]

F.G. Ferris, V. Phoenix, Y. Fujita, R.W. Smith, Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater, Geochim. Cosmochim. Acta 68 (2004) 1701-1710, https://doi.org/10.1016/S0016-7037(03)00503-9

[78]

Ferris, F.G., Stehmeler, L.G., Kantzas, A., Mourits, F.M. (1992) Bacteriogenic mineral plugging. In:Technical Meeting / Petroleum Conference of the South Saskatchewan. Petroleum Society of Canada.

[79]

F.G. Ferris, L.G. Stehmeler, A. Kantzas, F.M. Mourits, Bacteriogenic mineral plugging, J. Can. Petroleum Technol. 35 (1996) 56-61, https://doi.org/10.2118/96-08-06

[80]

D.E. Fontes, A.L. Mills, G.M. Hornberger, J.S. Herman, Physical and chemical factors influencing transport of microorganisms through porous media, Appl Environ. Microbiol 57 (1991) 2473-2481, https://doi.org/10.1128/aem.57.9.2473-2481.1991

[81]

J.W.A. Foppen, J.F. Schijven, Transport of E. coli in columns of geochemically heterogeneous sediment, Water Res 39 (2005) 3082-3088, https://doi.org/10.1016/j.watres.2005.05.023

[82]

E.O. Fridjonsson, J.D. Seymour, L.N. Schultz, et al., NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions, J. Contam. Hydrol. 120-121 (2011) 79-88, https://doi.org/10.1016/j.jconhyd.2010.07.009

[83]

M. Fukue, S.I. Ono, Y. Sato, Cementation of sands due to microbiologically-induced carbonate precipitation, Soils Found. 51 (2011) 83-93, https://doi.org/10.3208/sandf.51.83

[84]

K.S. Gandhi, R. Kumar, D. Ramkrishna, Some basic aspects of reaction engineering of precipitation processes, Ind. Eng. Chem. Res 34 (1995) 3223-3230, https://doi.org/10.1021/ie00037a007

[85]

Y. Gao, L. Hang, J. He, J. Chu, Mechanical behaviour of biocemented sands at various treatment levels and relative densities, Acta Geotech 14 (2019) 697-707, https://doi.org/10.1007/s11440-018-0729-3

[86]

D. Gat, Z. Ronen, M. Tsesarsky, Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation, Environ. Sci. Technol. 50 (2016) 616-624, https://doi.org/10.1021/acs.est.5b04033

[87]

D. Gat, Z. Ronen, M. Tsesarsky, Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media, Chemosphere 184 (2017) 524-531, https://doi.org/10.1016/j.chemosphere.2017.06.015

[88]

D. Gat, M. Tsesarsky, D. Shamir, Z. Ronen, Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria, Biogeosciences 11 (2014) 2561-2569, https://doi.org/10.5194/bg-11-2561-2014

[89]

T. Ghosh, S. Bhaduri, C. Montemagno, A. Kumar, Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface, PLoS One 14 (2019) e0210339, https://doi.org/10.1371/journal.pone.0210339

[90]

P. Gilbert, D.J. Evans, E. Evans, et al., Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis, J. Appl. Bacteriol. 71 (1991) 72-77, https://doi.org/10.1111/j.1365-2672.1991.tb04665.x

[91]

T.R. Ginn, E.M. Murphy, A. Chilakapati, U. Seeboonruang, Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media, J. Contam. Hydrol 48 (2001) 121-149, https://doi.org/10.1016/S0169-7722(00)00168-6

[92]

T.R. Ginn, B.D. Wood, K.E. Nelson, et al., Processes in microbial transport in the natural subsurface, Adv. Water Resour. 25 (2002) 1017-1042, https://doi.org/10.1016/S0309-1708(02)00046-5

[93]

U.K. Gollapudi, C.L. Knutson, S.S. Bang, M.R. Islam, A new method for controlling leaching through permeable channels, Chemosphere 30 (1995) 695-705, https://doi.org/10.1016/0045-6535(94)00435-W

[94]

Gomez, M.G., Anderson, C.M., DeJong, J.T., et al. (2014) Stimulating in situ soil bacteria for bio-cementation of sands. Geo-Congress 2014 Technical Papers: Geo- Characterization and Modeling for Sustainability GSP 234: https://doi.org/10.1061/9780784413272.164.

[95]

M.G. Gomez, C.M. Anderson, C.M.R. Graddy, et al., Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands, J. Geotech. Geoenviron. Eng. 143 (2017) 04016124, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640

[96]

M.G. Gomez, C.M.R. Graddy, J.T. DeJong, et al., Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths, J. Geotech. Geoenviron. Eng. 144 (2018) 04017098, https://doi.org/10.1061/(asce)gt.1943-5606.0001804

[97]

Gomez, M.G., Martinez, B.C., Dejong, J.T., et al. (2015) Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers: Ground Improvement 168:206-216. https://doi.org/10.1680/grim.13.00052.

[98]

C.M. Gorospe, S.H. Han, S.G. Kim, et al., Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558, Biotechnol. Bioprocess Eng. 18 (2013) 903-908, https://doi.org/10.1007/s12257-013-0030-0

[99]

S. Gowthaman, S. Mitsuyama, K. Nakashima, et al., Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan, Soils Found. 59 (2019) 484-499, https://doi.org/10.1016/j.sandf.2018.12.010

[100]

S. Gowthaman, A. Mohsenzadeh, K. Nakashima, S. Kawasaki, Removal of ammonium by-products from the effluent of bio-cementation system through struvite precipitation, Mater. Today Proc. 61 (2022) 243-249, https://doi.org/10.1016/j.matpr.2021.09.013

[101]

S. Gowthaman, K. Nakashima, S. Kawasaki, Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation, Soils Found. 60 (2020) 840-855, https://doi.org/10.1016/j.sandf.2020.05.012

[102]

D.M. Griffin, G. Quail, Movement of bacteria in moist, particulate systems, Aust. J. Biol. Sci 21 (1968) 579-582, https://doi.org/10.1071/BI9680579

[103]

N. Hamdan, E. Kavazanjian, Enzyme-induced carbonate mineral precipitation for fugitive dust control, Géotechnique 66 (2016) 546-555, https://doi.org/10.1680/jgeot.15.P.168

[104]

F. Hammes, N. Boon, J. De Villiers, et al., Strain-specific ureolytic microbial calcium carbonate precipitation, Appl. Environ. Microbiol 69 (2003) 4901-4909, https://doi.org/10.1128/AEM.69.8.4901-4909.2003

[105]

F. Hammes, W. Verstraete, Key roles of pH and calcium metabolism in microbial carbonate precipitation, Rev. Environ. Sci. Biotechnol 1 (2002) 3-7, https://doi.org/10.1023/A:1015135629155

[106]

Harbottle, M.J., Botusharova, S.P., Gardner, D.R. (2014) Self-healing soil:Biomimetic engineering of geotechnical structures to respond to damage. In: 7th International Congress on Environmental Geotechnics. pp 1121-1128.

[107]

M.P. Harkes, L.A. van Paassen, J.L. Booster, et al., Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecol. Eng. 36 (2010) 112-117, https://doi.org/10.1016/j.ecoleng.2009.01.004

[108]

N. Hataf, R. Jamali, Effect of fine-grain percent on soil strength properties improved by biological method, Geomicrobiol. J 35 (2018) 695-703, https://doi.org/10.1080/01490451.2018.1454554

[109]

D.W. Hendricks, F.J. Post, D.R. Khairnar, Adsorption of bacteria on soils: Experiments, thermodynamic rationale, and application, Water Air Soil Pollut 12 (1979) 219-232, https://doi.org/10.1007/BF01047124

[110]

M. Hermansson, The DLVO theory in microbial adhesion, Colloids Surf. B Biointerfaces 14 (1999) 105-119, https://doi.org/10.1016/S0927-7765(99)00029-6

[111]

T. Hoang, J. Alleman, B. Cetin, S.G. Choi, Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme, J. Mater. Civil Eng. 32 (2020) 04020030, https://doi.org/10.1061/(asce)mt.1943-5533.0003083

[112]

F. Huysman, W. Verstraete, Effect of cell surface characteristics on the adhesion of bacteria to soil particles, Biol. Fertil. Soils 16 (1993) 21-26, https://doi.org/10.1007/BF00336510

[113]

C.C. Ikeagwuani, D.C. Nwonu, Emerging trends in expansive soil stabilisation: A review, J. Rock Mech. Geotech. Eng. 11 (2019) 423-440, https://doi.org/10.1016/j.jrmge.2018.08.013

[114]

V. Ivanov, J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Rev. Environ. Sci. Biotechnol. 7 (2008) 139-153, https://doi.org/10.1007/s11157-007-9126-3

[115]

V. Ivanov, V. Stabnikov, Construction Biotechnology:Biogeochemistry, Microbiology and Biotechnology of Construction Materials and Processes, Springer, 2016.

[116]

V. Ivanov, V. Stabnikov, O. Stabnikova, S. Kawasaki, Environmental safety and biosafety in construction biotechnology, World J. Microbiol. Biotechnol. 35 (2019) 1-11, https://doi.org/10.1007/s11274-019-2598-9

[117]

A. Jacobs, F. Lafolie, J.M. Herry, M. Debroux, Kinetic adhesion of bacterial cells to sand: Cell surface properties and adhesion rate, Colloids Surf. B Biointerfaces 59 (2007) 35-45, https://doi.org/10.1016/j.colsurfb.2007.04.008

[118]

N. Jiang, K. Soga, The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures, Géotechnique 67 (2017) 42-53, https://doi.org/10.1680/jgeot.15.P.182

[119]

N. Jiang, H. Yoshioka, K. Yamamoto, K. Soga, Ureolytic activities of a urease- producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP, Ecol. Eng 90 (2016) 96-104, https://doi.org/10.1016/j.ecoleng.2016.01.073

[120]

N.J. Jiang, Y.J. Wang, J. Chu, et al., Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications, Soil Use Manag. 00 (2021) 1-26, https://doi.org/10.1111/sum.12736

[121]

F. Kalantary, M. Kahani, Int. J. Environ. Sci. Optimization of the biological soil improvement procedure, Technol. 16 (2019) 4231-4240, https://doi.org/10.1007/s13762-018-1821-9

[122]

A. Kantzas, L.G. Stehmeler, D.F. Marentette, et al., A novel method of sand consolidation through bacteriogenic mineral plugging, Annual Technical Meeting, Petroleum Society of Canada, 1992, p. 1992.

[123]

R.H. Karol, Chemical Grouting and Soil Stabilization, Revised And Expanded, 3rd edn., CRC Press, 2003.

[124]

T. Kawaguchi, A.W. Decho, A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism, J. Cryst. Growth 240 (2002) 230-235, https://doi.org/10.1016/S0022-0248(02)00918-1

[125]

J. Kawano, N. Shimobayashi, M. Kitamura, et al., Formation process of calcium carbonate from highly supersaturated solution, J. Cryst. Growth 237-239 (2002) 419-423, https://doi.org/10.1016/S0022-0248(01)01866-8

[126]

D. Kim, K. Park, D. Kim, Effects of ground conditions on microbial cementation in soils, Materials 7 (2014) 143-156, https://doi.org/10.3390/ma7010143

[127]

G. Kim, J. Kim, H. Youn, Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation, Appl. Sci. 8 (2018) 1-10, https://doi.org/10.3390/app8081277

[128]

C.M. Kirkland, S. Zanetti, E. Grunewald, et al., Detecting microbially induced calcite precipitation in a model well-bore using downhole low-field NMR, Environ. Sci. Technol 51 (2017) 1537-1543, https://doi.org/10.1021/acs.est.6b04833

[129]

M. Kitamura, Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion, J. Colloid Interface Sci. 236 (2001) 318-327, https://doi.org/10.1006/jcis.2000.7398

[130]

B. Krajewska, Urease-aided calcium carbonate mineralization for engineering applications: A review, J. Adv. Res. 13 (2018) 59-67, https://doi.org/10.1016/j.jare.2017.10.009

[131]

D. Kralj, L. Brečević, J. Kontrec, Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation, J. Cryst. Growth 177 (1997) 248-257, https://doi.org/10.1016/S0022-0248(96)01128-1

[132]

W.E. Krumbein, On the precipitation of aragonite on the surface of marine bacteria, Naturwissenschaften 61 (1974) 167, https://doi.org/10.1007/BF00602591

[133]

Kucharski, E.S., Cord-Ruwisch, R., Whiffin, V.S., Al-Thawadi, S.M. (2006) Microbial biocementation.

[134]

H.J. Lai, M.J. Cui, S.F. Wu, et al., Retarding effect of concentration of cementation solution on biocementation of soil, Acta Geotech 16 (2021) 1457-1472, https://doi.org/10.1007/s11440-021-01149-1

[135]

E.G. Lauchnor, D.M. Topp, A.E. Parker, R. Gerlach, Whole cell kinetics of ureolysis by Sporosarcina pasteurii, J. Appl. Microbiol 118 (2015) 1321-1332, https://doi.org/10.1111/jam.12804

[136]

L.M. Lee, N.W. Soon, Y. Tanaka, Stress-deformation and compressibility responses of bio-mediated residual soils, Ecol. Eng 60 (2013) 142-149, https://doi.org/10.1016/j.ecoleng.2013.07.034

[137]

X. Lei, S. Lin, Q. Meng, et al., Influence of different fiber types on properties of biocemented calcareous sand, Arabian J. Geosci. 13 (2020) 317, https://doi.org/10.1007/s12517-020-05309-7

[138]

S. Leroueil, P.R. Vaughan, The general and congruent effects of structure in natural soils and weak rocks, Géotechnique 40 (1990) 467-488, https://doi.org/10.1680/geot.1990.40.3.467

[139]

M. Li, X. Cheng, H. Guo, Heavy metal removal by biomineralization of urease producing bacteria isolated from soil, Int. Biodeterior. Biodegr. 76 (2013) 81-85, https://doi.org/10.1016/j.ibiod.2012.06.016

[140]

M. Li, L. Li, U. Ogbonnaya, et al., Influence of fiber addition on mechanical properties of MICP-treated sand, J. Mater. Civil Eng. 28 (2016) 04015166, https://doi.org/10.1061/(asce)mt.1943-5533.0001442

[141]

M. Li, K. Wen, Y. Li, L. Zhu, Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment, Geomicrobiol. J 35 (2018) 15-22, https://doi.org/10.1080/01490451.2017.1303553

[142]

B. Lian, Q. Hu, J. Chen, et al., Carbonate biomineralization induced by soil bacterium Bacillus megaterium, Geochim. Cosmochim. Acta 70 (2006) 5522-5535, https://doi.org/10.1016/j.gca.2006.08.044

[143]

J. Lian, H. Xu, X. He, et al., Biogrouting of hydraulic fill fine sands for reclamation projects, Mar. Georesour. Geotechnol. 37 (2019) 212-222, https://doi.org/10.1080/1064119X.2017.1420115

[144]

S. Liang, J. Chen, J. Niu, et al., Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation, Mar. Georesour. Geotechnol. 38 (2020) 393-399, https://doi.org/10.1080/1064119X.2019.1575939

[145]

H. Lin, M.T. Suleiman, D.G. Brown, E. Kavazanjian, Mechanical behavior of sands treated by microbially induced carbonate precipitation, J. Geotech. Geoenviron. Eng. 142 (2016) 04015066, https://doi.org/10.1061/(asce)gt.1943-5606.0001383

[146]

L. Liu, H. Liu, A.W. Stuedlein, et al., Strength, stiffness, and microstructure characteristics of biocemented calcareous sand, Can. Geotech. J. 56 (2019) 1502-1513, https://doi.org/10.1139/cgj-2018-0007

[147]

L. Liu, H. Liu, Y. Xiao, et al., Biocementation of calcareous sand using soluble calcium derived from calcareous sand, Bull. Eng. Geol. Environ. 77 (2018) 1781-1791, https://doi.org/10.1007/s10064-017-1106-4

[148]

P. Liu, G. Shao, R. Huang, Study of the interactions between S. pasteurii and indigenous bacteria and the effect of these interactions on the MICP, Arabian J. Geosci. 12 (2019) 1-10, https://doi.org/10.1007/s12517-019-4840-z

[149]

S. Lou, X. Guo, T. Fan, D. Zhang, Butterflies: inspiration for solar cells and sunlight water-splitting catalysts, Energy Environ. Sci 5 (2012) 9195-9216, https://doi.org/10.1039/C2EE03595B

[150]

H.A. Lowenstam, Minerals formed by organisms, Science 211 (1979) (1981) 1126-1131, https://doi.org/10.1126/science.7008198

[151]

N.A. Madlool, R. Saidur, M.S. Hossain, N.A. Rahim, A critical review on energy use and savings in the cement industries, Renew. Sustain. Energy Rev. 15 (2011) 2042-2060, https://doi.org/10.1016/j.rser.2011.01.005

[152]

B. Mahanty, S. Kim, C.G. Kim, Assessment of a biostimulated or bioaugmented calcification system with Bacillus pasteurii in a simulated soil environment, Microb. Ecol 65 (2013) 679-688, https://doi.org/10.1007/s00248-012-0137-4

[153]

A. Mahawish, A. Bouazza, W.P. Gates, Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels, J. Geotech. Geoenviron. Eng. 145 (2019) 04019033, https://doi.org/10.1061/(asce)gt.1943-5606.0002066

[154]

Mahawish, A., Bouazza, A., Gates, W.P., (2019b) Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers: Ground Improvement 172:25-36. https://doi.org/10.1680/jgrim.17.00039.

[155]

A. Mahawish, A. Bouazza, W.P. Gates, Strengthening crushed coarse aggregates using bio-grouting, Geomech. Geoeng. 14 (2019) 59-70, https://doi.org/10.1080/17486025.2018.1521999

[156]

A. Mahawish, A. Bouazza, W.P. Gates, Effect of particle size distribution on the bio-cementation of coarse aggregates, Acta Geotech 13 (2018) 1019-1025, https://doi.org/10.1007/s11440-017-0604-7

[157]

A. Mahawish, A. Bouazza, W.P. Gates, Biogrouting coarse materials using soil-lift treatment strategy, Can. Geotech. J. 53 (2016) 2080-2085, https://doi.org/10.1139/cgj-2016-0167

[158]

A. Mahawish, A. Bouazza, W.P. Gates, Improvement of coarse sand engineering properties by microbially induced calcite precipitation, Geomicrobiol. J 35 (2018) 887-897, https://doi.org/10.1080/01490451.2018.1488019

[159]

K.C. Marshall, Biofilms: An overview of bacterial adhesion, activity, and control at surfaces. Control of biofilm formation awaits the development of a method to prevent bacterial adhesion, ASM Am. Soc. Microbiol. News 58 (1992) 202-207.

[160]

K.C. Marshall, R. Stout, R. Mitchell, Mechanism of the initial events in the sorption of marine bacteria to surfaces, J. Gen. Microbiol 68 (1971) 337-348, https://doi.org/10.1099/00221287-68-3-337

[161]

D. Martin, K. Dodds, B.T. Ngwenya, et al., Inhibition of sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis, Environ. Sci. Technol. 46 (2012) 8351-8355, https://doi.org/10.1021/es3015875

[162]

A. Martinez, J. Dejong, I. Akin, et al., Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges, Géotechnique 72 (2022) 687-705, https://doi.org/10.1680/jgeot.20.P.170

[163]

A. Martinez, L. Huang, M.G. Gomez, Thermal conductivity of MICP-treated sands at varying degrees of saturation, Géotech. Lett. 9 (2019) 15-21, https://doi.org/10.1680/jgele.18.00126

[164]

B.C. Martinez, J.T. DeJong, T.R. Ginn, et al., Experimental optimization of microbial-induced carbonate precipitation for soil improvement, J. Geotech. Geoenviron. Eng. 139 (2013) 587-598, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787

[165]

L.M. McDowell‐Boyer, J.R. Hunt, N. Sitar, Particle transport through porous media, Water Resour. Res 22 (1986) 1901-1921, https://doi.org/10.1029/WR022i013p01901

[166]

H. Meng, Y. Gao, J. He, et al., Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests, Geoderma 383 (2021) 114723, https://doi.org/10.1016/j.geoderma.2020.114723

[167]

F.D. Meyer, S. Bang, S. Min, et al., Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control, Geotech. Special Publ. 211 (2011) 4002-4011, https://doi.org/10.1061/41165(397)409

[168]

J.M. Minto, R.J. Lunn, G. el Mountassir, Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation, Water Resour. Res 55 (2019) 7229-7245, https://doi.org/10.1029/2019WR025153

[169]

A.C. Mitchell, E.J. Espinosa-Ortiz, S.L. Parks, et al., Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions, Biogeosciences 16 (2019) 2147-2161, https://doi.org/10.5194/bg-16-2147-2019

[170]

A.C. Mitchell, F.G. Ferris, The influence of bacillus pasteurii on the nucleation and growth of calcium carbonate, Geomicrobiol. J 23 (2006) 213-226, https://doi.org/10.1080/01490450600724233

[171]

J.K. Mitchell, J.C. Santamarina, Biological considerations in geotechnical engineering, J. Geotech. Geoenviron. Eng. 131 (2005) 1222-1233, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)

[172]

J.K. Mitchell, K. Soga, Fundamentals of Soil Behaviour, John Wiley & Sons, 2005.

[173]

H.L.T. Mobley, M.D. Island, R.P. Hausinger, Molecular biology of microbial ureases, Microbiol. Rev 59 (1995) 451-480, https://doi.org/10.1128/mmbr.59.3.451-480.1995

[174]

A. Mohsenzadeh, E. Aflaki, S. Gowthaman, et al., A two-stage treatment process for the management of produced ammonium by-products in ureolytic bio-cementation process, Int. J. Environ. Sci. Technol. 19 (2022) 449-462, https://doi.org/10.1007/s13762-021-03138-z

[175]

B.M. Montoya, J.T. Dejong, Healing of biologically induced cemented sands, Geotech. Letters 3 (2013) 147-151, https://doi.org/10.1680/geolett.13.00044

[176]

B.M. Montoya, J.T. DeJong, Stress-strain behavior of sands cemented by microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng. 141 (2015) 04015019, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302

[177]

B.M. Montoya, J.T. DeJong, R.W. Boulanger, Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation, Géotechnique 63 (2013) 302-312, https://doi.org/10.1680/geot.SIP13.P.019

[178]

S. Moravej, G. Habibagahi, E. Nikooee, A. Niazi, Stabilization of dispersive soils by means of biological calcite precipitation, Geoderma 315 (2018) 130-137, https://doi.org/10.1016/j.geoderma.2017.11.037

[179]

J.W. Morse, R.S. Arvidson, A. Lüttge, Calcium carbonate formation and dissolution, Chem. Rev. 107 (2007) 342-381, https://doi.org/10.1021/cr050358j

[180]

B.M. Mortensen, M.J. Haber, J.T. DeJong, et al., Effects of environmental factors on microbial induced calcium carbonate precipitation, J. Appl. Microbiol 111 (2011) 338-349, https://doi.org/10.1111/j.1365-2672.2011.05065.x

[181]

R.F. Mueller, Bacterial transport and colonization in low nutrient environments, Water Res 30 (1996) 2681-2690, https://doi.org/10.1016/S0043-1354(96)00181-9

[182]

D. Mujah, L. Cheng, M.A. Shahin, Microstructural and geomechanical study on biocemented sand for optimization of MICP process, J. Mater. Civil Eng. 31 (2019) 04019025, https://doi.org/10.1061/(asce)mt.1943-5533.0002660

[183]

D. Mujah, M.A. Shahin, L. Cheng, State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization, Geomicrobiol. J 34 (2017) 524-537.

[184]

M. Naeimi, J. Chu, Comparison of conventional and bio-treated methods as dust suppressants, Environ. Sci. Pollut. Res. 24 (2017) 23341-23350, https://doi.org/10.1007/s11356-017-9889-1

[185]

Nafisi, A., Khoubani, A., Montoya, B.M., Evans, T.M. (2018) The effect of grain size and shape on mechanical behavior of MICP sand I: Experimental study. In:Proceedings of International Symposium on Bio-mediated and Bio-inspired Geotechnics (B2G). Atlanta, Georgia.

[186]

A. Nafisi, D. Mocelin, B.M. Montoya, S. Underwood, Tensile strength of sands treated with microbially induced carbonate precipitation, Can. Geotech. J. 57 (2020) 1611-1616, https://doi.org/10.1139/cgj-2019-0230

[187]

Nafisi, B.M. Montoya, T.M. Evans, Shear strength envelopes of biocemented sands with varying particle size and cementation level, J. Geotech. Geoenviron. Eng. 146 (2020) 04020002, https://doi.org/10.1061/(asce)gt.1943-5606.0002201

[188]

M.K. Nassar, D. Gurung, M. Bastani, et al., Large-scale experiments in microbially induced calcite precipitation (MICP): Reactive transport model development and prediction, Water Resour. Res 54 (2018) 480-500, https://doi.org/10.1002/2017WR021488

[189]

M. Nemati, E.A. Greene, G. Voordouw, Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option, Process Biochem. 40 (2005) 925-933, https://doi.org/10.1016/j.procbio.2004.02.019

[190]

M. Nemati, G. Voordouw, Modification of porous media permeability, using calcium carbonate produced enzymatically in situ, Enzyme Microb. Technol 33 (2003) 635-642, https://doi.org/10.1016/S0141-0229(03)00191-1

[191]

D. Neupane, H. Yasuhara, N. Kinoshita, T. Unno, Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique, J. Geotech. Geoenviron. Eng. 139 (2013) 2201-2211, https://doi.org/10.1061/(asce)gt.1943-5606.0000959

[192]

P.Q. Nguyen, N.M.D. Courchesne, A. Duraj-Thatte, et al., Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart Materials, Adv. Mater. 30 (2018) 1704847, https://doi.org/10.1002/adma.201704847

[193]

S.T. O’Donnell, E. Kavazanjian, Stiffness and dilatancy improvements in uncemented sands treated through MICP, J. Geotech. Geoenviron. Eng. 141 (2015) 02815004, https://doi.org/10.1061/(asce)gt.1943-5606.0001407

[194]

T. Ogino, T. Suzuki, K. Sawada, The formation and transformation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta 51 (1987) 2757-2767, https://doi.org/10.1016/0016-7037(87)90155-4

[195]

G.D.O. Okwadha, J. Li, Optimum conditions for microbial carbonate precipitation, Chemosphere 81 (2010) 1143-1148, https://doi.org/10.1016/j.chemosphere.2010.09.066

[196]

A.I. Omoregie, G. Khoshdelnezamiha, N. Senian, et al., Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials, Ecol. Eng. 109 (2017) 65-75, https://doi.org/10.1016/j.ecoleng.2017.09.012

[197]

A.I. Omoregie, E.A. Palombo, D.E.L. Ong, P.M. Nissom, A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation, Biocatal. Agric. Biotechnol 24 (2020) 101544, https://doi.org/10.1016/j.bcab.2020.101544

[198]

A.I. Omoregie, E.A. Palombo, D.E.L. Ong, P.M. Nissom, Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method, Constr. Build. Mater. 109 (2019) 65-75, https://doi.org/10.1016/j.conbuildmat.2019.116828

[199]

K.J. Osinubi, A.O. Eberemu, E.W. Gadzama, T.S. Ijimdiya, Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application, SN Appl. Sci. 1 (2019) 1-12, https://doi.org/10.1007/s42452-019-0868-7

[200]

V.L. Pacheco, L. Bragagnolo, C. Reginatto, A. Thomé, Microbially induced calcite precipitation (MICP): Review from an engineering perspective, Geotech. Geol. Eng. 40 (2022) 2379-2396, https://doi.org/10.1007/s10706-021-02041-1

[201]

S.J. Park, Y.M. Park, W.Y. Chun, et al., Calcite-forming bacteria for compressive strength improvement in mortar, J. Microbiol. Biotechnol. 20 (2010) 782-788, https://doi.org/10.4014/jmb.0911.11015

[202]

S.-S. Park, S.G. Choi, I.-H. Nam, Effect of plant-induced calcite precipitation on the strength of sand, J. Mater. Civil Eng. 26 (2014) 06014017, https://doi.org/10.1061/(asce)mt.1943-5533.0001029

[203]

T.M. Petry, D.N. Little, Review of stabilization of clays and expansive soils in pavements and lightly loaded structures - History, practice, and future, J. Mater. Civil Eng. 14 (2002) 447-460, https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

[204]

A.J. Phillips, R. Gerlach, E.G. Lauchnor, et al., Engineered applications of ureolytic biomineralization: A review, Biofouling 29 (2013) 715-733, https://doi.org/10.1080/08927014.2013.796550

[205]

M.M. Rahman, R.N. Hora, I. Ahenkorah, et al., State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications, Sustainability 12 (2020) 1-41, https://doi.org/10.3390/SU12156281

[206]

V. Rebata-Landa, Microbial Activity in Sediments: Effects on Soil Behavior, Georgia Institute of Technology, 2007.

[207]

V. Rebata-Landa, J.C. Santamarina, Mechanical limits to microbial activity in deep sediments, Geochem., Geophys., Geosyst. 7 (2006) Q11006, https://doi.org/10.1029/2006GC001355

[208]

G.A. Riveros, A. Sadrekarimi, Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation, Soil Dyn. Earthquake Eng. 131 (2020) 106034, https://doi.org/10.1016/j.soildyn.2020.106034

[209]

J.D. Rodriguez-Blanco, S. Shaw, L.G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale 3 (2011) 265-271, https://doi.org/10.1039/c0nr00589d

[210]

C. Rodriguez-Navarro, C. Jimenez-Lopez, A. Rodriguez-Navarro, et al., Bacterially mediated mineralization of vaterite, Geochim. Cosmochim. Acta 71 (2007) 1197-1213, https://doi.org/10.1016/j.gca.2006.11.031

[211]

K. Rowshanbakht, M. Khamehchiyan, R.H. Sajedi, M.R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng 89 (2016) 49-55, https://doi.org/10.1016/j.ecoleng.2016.01.010

[212]

C. Ruiz, M. Monteoliva-Sanchez, F. Huertas, A. Ramos-Cormenzana, Calcium carbonate precipitation by several species of Myxococcus. Chemosphere, 17 (1988) 835-838, https://doi.org/10.1016/0045-6535(88)90263-9

[213]

M.M. Sadeghi, A.R. Modarresnia, F. Shafiei, Parameters effects evaluation of microbial strengthening of sandy soils in mixing experiments using Taguchi methodology, Geomicrobiol. J 32 (2015) 453-465, https://doi.org/10.1080/01490451.2014.958206

[214]

S. Saleh, N.Z.M. Yunus, K. Ahmad, N. Ali, Improving the strength of weak soil using polyurethane grouts: A review, Constr. Build. Mater. 202 (2019) 738-752, https://doi.org/10.1016/j.conbuildmat.2019.01.048

[215]

E. Salifu, E. MacLachlan, K.R. Iyer, et al., Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation, Eng. Geol. 201 (2016) 96-105, https://doi.org/10.1016/j.enggeo.2015.12.027

[216]

A.C.M. San Pablo, M. Lee, C.M.R. Graddy, et al., Meter-scale biocementation experiments to advance process control and reduce impacts: Examining spatial control, ammonium by-product removal, and chemical reductions, J. Geotech. Geoenviron. Eng. 146 (2020) 04020125, https://doi.org/10.1061/(asce)gt.1943-5606.0002377

[217]

S. Saneiyan, D. Ntarlagiannis, J. Ohan, et al., Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes, Ecol. Eng. 127 (2019) 36-47, https://doi.org/10.1016/j.ecoleng.2018.11.010

[218]

J.C. Santamarina, K.A. Klein, M.A. Fam, Soils and Waves, John Wiley & Sons, 2001.

[219]

M. Sarikaya, Biomimetics: Materials fabrication through biology, Proc. Natl. Acad. Sci. U. S. A 96 (1999) 14183-14185, https://doi.org/10.1073/pnas.96.25.14183

[220]

M.A. Scholl, A.L. Mills, J.S. Herman, G.M. Hornberger, The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials, J. Contam. Hydrol. 6 (1990) 321-336, https://doi.org/10.1016/0169-7722(90)90032-C

[221]

S. Schultze-Lam, D. Fortin, B.S. Davis, T.J. Beveridge, Mineralization of bacterial surfaces, Chem. Geol. 132 (1996) 171-181, https://doi.org/10.1016/s0009-2541(96)00053-8

[222]

M. Seifan, A. Berenjian, Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world, Appl. Microbiol. Biotechnol. 103 (2019) 4693-4708, https://doi.org/10.1007/s00253-019-09861-5

[223]

Shahrokhi-Shahraki, R., Zomorodian, S.M.A., Niazi, A., Okelly, B.C. (2015) Improving sand with microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers: Ground Improvement 168:217-230. https://doi.org/10.1680/grim.14.00001.

[224]

E. Sham, M.D. Mantle, J. Mitchell, et al., Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements, J. Contam. Hydrol. 152 (2013) 35-43, https://doi.org/10.1016/j.jconhyd.2013.06.003

[225]

A. Sharma, R. Ramkrishnan, Study on effect of microbial induced calcite precipitates on strength of fine grained soils, Perspect Sci. ((Neth)) 8 (2016) 198-202, https://doi.org/10.1016/j.pisc.2016.03.017

[226]

M. Sharma, N. Satyam, K.R. Reddy, Comparison of improved shear strength of biotreated sand using different ureolytic strains and sterile conditions, Soil Use Manag. 38 (2021) 771-789, https://doi.org/10.1111/sum.12690

[227]

M. Sharma, N. Satyam, K.R. Reddy, Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions, J. Rock Mech. Geotech. Eng. (2021), https://doi.org/10.1016/j.jrmge.2020.11.006

[228]

M.S. Smith, G.W. Thomas, R.E. White, D. Ritonga, Transport of Escherichia coli through intact and disturbed soil columns, J. Environ. Qual. 14 (1985) 87-91, https://doi.org/10.2134/jeq1985.00472425001400010017x

[229]

I. Sondi, B. Salopek-Sondi, Influence of the primary structure of enzymes on the formation of CaCO 3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases, Langmuir 21 (2005) 8876-8882, https://doi.org/10.1021/la051129v

[230]

C. Song, D. Elsworth, S. Zhi, C. Wang, The influence of particle morphology on microbially induced CaCO3 clogging in granular media, Mar. Georesour. Geotechnol. 39 (2021) 74-81, https://doi.org/10.1080/1064119X.2019.1677828

[231]

C. Song, C. Wang, D. Elsworth, S. Zhi, Compressive strength of MICP-treated silica sand with different particle morphologies and gradings, Geomicrobiol. J. 39 (2022) 148-154, https://doi.org/10.1080/01490451.2021.2020936

[232]

N.W. Soon, L.M. Lee, S.L. Hii, An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement, Int. J. Civil Environ. Eng. 6 (2012) 188-194.

[233]

N.W. Soon, L.M. Lee, T.C. Khun, H.S. Ling, Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation, J. Geotech. Geoenviron. Eng. 140 (2014) 04014006, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089

[234]

N.W. Soon, L.M. Lee, T.C. Khun, H.S. Ling, Improvements in engineering properties of soils through microbial-induced calcite precipitation, KSCE J. Civil Eng. 17 (2013) 718-728, https://doi.org/10.1007/s12205-013-0149-8

[235]

C.A. Spencer, L. van Paassen, H. Sass, Effect of jute fibres on the process of MICP and properties of biocemented sand, Materials 13 (2020) 5429, https://doi.org/10.3390/ma13235429

[236]

V. Stabnikov, J. Chu, V. Ivanov, Y. Li, Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand, World J. Microbiol. Biotechnol. 29 (2013) 1453-1460, https://doi.org/10.1007/s11274-013-1309-1

[237]

V. Stabnikov, M. Naeimi, V. Ivanov, J. Chu, Formation of water-impermeable crust on sand surface using biocement, Cem. Concr. Res 41 (2011) 1143-1149, https://doi.org/10.1016/j.cemconres.2011.06.017

[238]

T.K. Stevik, K. Aa, G. Ausland, J.F. Hanssen, Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review, Water Res. 38 (2004) 1355-1367, https://doi.org/10.1016/j.watres.2003.12.024

[239]

S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO3, Soil Biol. Biochem 31 (1999) 1563-1571, https://doi.org/10.1016/S0038-0717(99)00082-6

[240]

F. Su, Y. Yang, Y. Qi, H. Zhang, Combining microbially induced calcite precipitation (MICP) with zeolite: A new technique to reduce ammonia emission and enhance soil treatment ability of MICP technology, J. Environ. Chem. Eng. 10 (2022) 107770, https://doi.org/10.2139/ssrn.3957497

[241]

X. Sun, L. Miao, T. Tong, C. Wang, Study of the effect of temperature on microbially induced carbonate precipitation, Acta Geotech 14 (2019) 627-638, https://doi.org/10.1007/s11440-018-0758-y

[242]

X. Sun, L. Miao, L. Wu, C. Wang, Mar. Georesour. Study of magnesium precipitation based on biocementation, Geotechnol. 37 (2019) 1257-1266, https://doi.org/10.1080/1064119X.2018.1549626

[243]

C.Y. Tai, F.-B. Chen, Polymorphism of CaCO3, precipitated in a constant-composition environment, AIChE J. 44 (1998) 1790-1798, https://doi.org/10.1002/aic.690440810

[244]

Y. Tan, W.J. Bond, D.M. Griffin, Transport of bacteria during unsteady unsaturated soil water flow, Soil Sci. Soc. Am. J. 56 (1992) 1331-1340, https://doi.org/10.2136/sssaj1992.03615995005600050001x

[245]

C.S. Tang, L. yang Yin, N. Jiang, et al., Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review, Environ. Earth Sci 79 (2020) 1-23, https://doi.org/10.1007/s12665-020-8840-9

[246]

D. Terzis, R. Bernier-Latmani, L. Laloui, Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions, Géotech. Lett. 6 (2016) 50-57, https://doi.org/10.1680/jgele.15.00134

[247]

D. Terzis, L. Laloui, A decade of progress and turning points in the understanding of bio-improved soils: A review, Geomech. Energy Environ. 19 (2019) 100116, https://doi.org/10.1016/j.gete.2019.03.001

[248]

D. Terzis, L. Laloui, Cell-free soil bio-cementation with strength, dilatancy and fabric characterization, Acta Geotech 14 (2019) 639-656, https://doi.org/10.1007/s11440-019-00764-3

[249]

D. Terzis, L. Laloui, 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation, Sci. Rep 8 (2018) 1-11, https://doi.org/10.1038/s41598-018-19895-w

[250]

D. Terzis, L. Laloui, S. Dornberger, R. Harran, A full-scale application of slope stabilization via calcite bio-mineralization followed by long-term GIS surveillance, Geo-Congress 2020: Biogeotechnics GSP (2020) 320, https://doi.org/10.1061/9780784482834.008

[251]

K. Tian, X. Wang, S. Zhang, et al., Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation, J. Mater. Civil Eng. 32 (2020) 04020291, https://doi.org/10.1061/(asce)mt.1943-5533.0003391

[252]

D.J. Tobler, M.O. Cuthbert, R.B. Greswell, et al., Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite, Geochim. Cosmochim. Acta 75 (2011) 3290-3301, https://doi.org/10.1016/j.gca.2011.03.023

[253]

D.J. Tobler, E. Maclachlan, V.R. Phoenix, Microbially mediated plugging of porous media and the impact of differing injection strategies, Ecol. Eng. 42 (2012) 270-278, https://doi.org/10.1016/j.ecoleng.2012.02.027

[254]

S. Torkzaban, S.S. Tazehkand, S.L. Walker, S.A. Bradford, Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry, Water Resour. Res 44 (2008) W04403, https://doi.org/10.1029/2007WR006541

[255]

J. Tourney, B.T. Ngwenya, Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism, Chem. Geol. 262 (2009) 138-146, https://doi.org/10.1016/j.chemgeo.2009.01.006

[256]

M. Tsesarsky, D. Gat, Z. Ronen, Biological aspects of microbial-induced calcite precipitation, Environ. Geotech. 5 (2017) 69-78, https://doi.org/10.1680/jenge.15.00070

[257]

Tsukamoto, M., Inagaki, Y., Sasaki, Y., Oda K. (2013) Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics. Paris, pp 2613-2616.

[258]

M. Umar, K.A. Kassim, K.T. Ping Chiet, Biological process of soil improvement in civil engineering: A review, J. Rock Mech. Geotech. Eng. 8 (2016) 767-774, https://doi.org/10.1016/j.jrmge.2016.02.004

[259]

Updegraff, D.M. (1983) Plugging and penetration of petroleum reservoir rock by microorganisms. In:Proceedings of the 1982 International Conference on Microbial Enhancement of Oil Recovery. pp 80-85.

[260]

van der, Star W.R.L., et al. (2011) Stabilization of gravel deposits using microorganisms. In:Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering. pp 85-90.

[261]

M.C.M. van Loosdrecht, J. Lyklema, W. Norde, et al., The role of bacterial cell wall hydrophobicity in adhesion, Appl. Environ. Microbiol 53 (1987) 1893-1897, https://doi.org/10.1128/aem.53.8.1893-1897.1987

[262]

M.C.M. van Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder, Bacterial adhesion: A physicochemical approach, Microb. Ecol. 17 (1989) 1-15, https://doi.org/10.1007/BF02025589

[263]

M.C.M. van Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder, Influence of interfaces on microbial activity, Microbiol. Rev. 54 (1990) 75-87, https://doi.org/10.1128/mmbr.54.1.75-87.1990

[264]

2009) Biogrout: Ground improvement by microbially induced carbonate precipitation. Delft University of Technology.

[265]

L.A. van Paassen, R. Ghose, T.J.M. van der Linden, et al., Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment, J. Geotech. Geoenviron. Eng. 136 (2010) 1721-1728, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[266]

Harkes, M.P., et al. (2009) Scale up of BioGrout:A biological ground reinforcement method. In:Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering. IOS Press, pp 2328-2333.

[267]

R.A. van Santen, The Ostwald step rule, J. Phys. Chem. 88 (1984) 5768-5769, https://doi.org/10.1021/j150668a002

[268]

J.A. van Veen, L.S. van Overbeek, J.D. van Elsas, Fate and activity of microorganisms introduced into soil, Microbiol. Mol. Biol. Rev 61 (1997) 121-135, https://doi.org/10.1128/.61.2.121-135.1997

[269]

P.J. Venda Oliveira, J.P.G. Neves, Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils, J. Mater. Civil Eng. 31 (2019) 04019121, https://doi.org/10.1061/(asce)mt.1943-5533.0002774

[270]

S. Venuleo, L. Laloui, D. Terzis, et al., Microbially induced calcite precipitation effect on soil thermal conductivity, Géotech. Lett. 6 (2016) 39-44, https://doi.org/10.1680/jgele.15.00125

[271]

E.J.W. Verwey, J.T.G. Overbeek, J. Phys. Theory of the stability of lyophobic colloids, Colloid Chem. 51 (1948) 631-636, https://doi.org/10.1021/j150453a001

[272]

L. Wang, J. Chu, S. Wu, H. Wang, Stress-dilatancy behavior of cemented sand: comparison between bonding provided by cement and biocement, Acta Geotech 16 (2021) 1441-1456, https://doi.org/10.1007/s11440-021-01146-4

[273]

X. Wang, J. Tao, Polymer-modified microbially induced carbonate precipitation for one-shot targeted and localized soil improvement, Acta Geotech 14 (2019) 657-671, https://doi.org/10.1007/s11440-018-0757-z

[274]

Y. Wang, C. Konstantinou, K. Soga, et al., Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP- treated sandy soils, Acta Geotech 17 (2022) 3817-3818, https://doi.org/10.1007/s11440-022-01478-9

[275]

Y. Wang, K. Soga, J.T. Dejong, A.J. Kabla, A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP, Géotechnique 69 (2019) 1086-1094, https://doi.org/10.1680/jgeot.18.P.031

[276]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Microscale visualization of microbial- induced calcium carbonate precipitation processes, J. Geotech. Geoenviron. Eng. 145 (2019) 04019045, https://doi.org/10.1061/(asce)gt.1943-5606.0002079

[277]

Y. Wang, K. Soga, J.T. DeJong, A.J. Kabla, Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: Particle-scale experimental study, J. Geotech. Geoenviron. Eng. 147 (2021) 04021036, https://doi.org/10.1061/(asce)gt.1943-5606.0002509

[278]

Y.H. Wang, S.C. Leung, Characterization of cemented sand by experimental and numerical investigations, J. Geotech. Geoenviron. Eng. 134 (2008) 992-1004, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(992)

[279]

Z. Wang, N. Zhang, G. Cai, et al., Review of ground improvement using microbial induced carbonate precipitation (MICP, Mar. Georesour. Geotechnol. 35 (2017) 1135-1146, https://doi.org/10.1080/1064119X.2017.1297877

[280]

M.H. Weil, J.T. DeJong, B.C. Martinez, B.M. Mortensen, Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand, Geotech. Test. J. 35 (2012) 330-341, https://doi.org/10.1520/GTJ103365

[281]

K. Wen, Y. Li, F. Amini, L. Li, Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate, Acta Geotech 15 (2020) 17-27, https://doi.org/10.1007/s11440-019-00899-3

[282]

Whiffin, V.S. (2004) Microbial CaCO 3 precipitation for the production of biocement. Murdoch University.

[283]

V.S. Whiffin, L.A. van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J 24 (2007) 417-423, https://doi.org/10.1080/01490450701436505

[284]

V. Wiktor, H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cem. Concr. Compos. 33 (2011) 763-770, https://doi.org/10.1016/j.cemconcomp.2011.03.012

[285]

W.R. Wiley, J.L. Stokes, Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteurii, J. Bacteriol 84 (1962) 730-734, https://doi.org/10.1128/jb.84.4.730-734.1962

[286]

J. Won, B. Jeong, J. Lee, et al., Facilitation of microbially induced calcite precipitation with kaolinite nucleation, Géotechnique 71 (2021) 728-734, https://doi.org/10.1680/jgeot.19.p.324

[287]

D.M. Wood, Soil Behaviour and Critical State Soil Mechanics, Cambridge Press, 2014.

[288]

E. Worrell, L. Price, N. Martin, et al., Carbon dioxide emissions from the global cement industry, Annu. Rev. Energy Environ. 26 (2001) 303-329, https://doi.org/10.1146/annurev.energy.26.1.303

[289]

C. Wu, J. Chu, Biogrouting method for stronger bond strength for aggregates, J. Geotech. Geoenviron. Eng. 146 (2020) 06020021, https://doi.org/10.1061/(asce)gt.1943-5606.0002386

[290]

C. Wu, J. Chu, L. Cheng, S. Wu, Biogrouting of aggregates using premixed injection method with or without pH adjustment, J. Mater. Civil Eng. 31 (2019) 06019008, https://doi.org/10.1061/(asce)mt.1943-5533.0002874

[291]

S. Wu, B. Li, J. Chu, Stress-dilatancy behavior of MICP-treated sand, Int. J. Geomech. 21 (2021) 4020264, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001923

[292]

Wu, S., Li, B., Chu J. (2019b) Large-scale model tests of biogrouting for sand and rock. Proceedings of the Institution of Civil Engineers - Ground Improvement 0:1-10. https://doi.org/10.1680/jgrim.18.00074.

[293]

P. Xiao, H. Liu, A.W. Stuedlein, et al., Effect of relative density and biocementation on cyclic response of calcareous sand, Can. Geotech. J. 56 (2019) 1849-1862, https://doi.org/10.1139/cgj-2018-0573

[294]

Y. Xiao, H. Chen, A.W. Stuedlein, et al., Restraint of particle breakage by biotreatment method, J. Geotech. Geoenviron. Eng. 146 (2020) 04020123, https://doi.org/10.1061/(asce)gt.1943-5606.0002384

[295]

Y. Xiao, X. He, T.M. Evans, et al., Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand, J. Geotech. Geoenviron. Eng. 145 (2019) 04019048, https://doi.org/10.1061/(asce)gt.1943-5606.0002108

[296]

Y. Xiao, X. He, W. Wu, et al., Kinetic biomineralization through microfluidic chip tests, Acta Geotech 16 (2021) 3229-3237, https://doi.org/10.1007/s11440-021-01205-w

[297]

Y. Xiao, A.W. Stuedlein, J. Ran, et al., Effect of particle shape on strength and stiffness of biocemented glass beads, J. Geotech. Geoenviron. Eng. 145 (2019) 06019016, https://doi.org/10.1061/(asce)gt.1943-5606.0002165

[298]

Y. Xiao, Y. Tang, G. Ma, et al., Thermal conductivity of biocemented graded sands, J. Geotech. Geoenviron. Eng. 147 (2021) 04021106, https://doi.org/10.1061/(asce)gt.1943-5606.0002621

[299]

Y. Xiao, Y. Wang, C.S. Desai, et al., Strength and deformation responses of biocemented sands using a temperature-controlled method, Int. J. Geomech. 19 (2019) 04019120, https://doi.org/10.1061/(asce)gm.1943-5622.0001497

[300]

Y. Xiao, Y. Wang, S. Wang, et al., Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method, Acta Geotech 16 (2021) 1417-1427, https://doi.org/10.1007/s11440-020-01122-4

[301]

Y. Xiao, C. Zhao, Y. Sun, et al., Compression behavior of MICP-treated sand with various gradations, Acta Geotech 16 (2020) 1391-1400, https://doi.org/10.1007/s11440-020-01116-2

[302]

C. Xu, A.R. Puente-Santiago, D. Rodríguez-Padrón, et al., Nature-inspired hierarchical materials for sensing and energy storage applications, Chem. Soc. Rev. 50 (2021) 4856-4871, https://doi.org/10.1039/C8CS00652K

[303]

G. Xu, Y. Tang, J. Lian, et al., Mineralization process of biocemented sand and impact of bacteria and calcium ions concentrations on crystal morphology, Adv. Mater. Sci. Eng. 2017 (2017) 1-13, https://doi.org/10.1155/2017/5301385

[304]

J. Xu, Y. Du, Z. Jiang, A. She, Effects of calcium source on biochemical properties of microbial CaCo3 precipitation, Front. Microbiol 6 (2015) 1366, https://doi.org/10.3389/fmicb.2015.01366

[305]

X. Xu, H. Guo, X. Cheng, M. Li, The promotion of magnesium ions on aragonite precipitation in MICP process, Constr. Build. Mater 263 (2020) 120057, https://doi.org/10.1016/j.conbuildmat.2020.120057

[306]

Y. Yang, J. Chu, B. Cao, et al., Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge, J. Clean. Prod 262 (2020) 1-10, https://doi.org/10.1016/j.jclepro.2020.121315

[307]

H. Yasuhara, D. Neupane, K. Hayashi, M. Okamura, Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils Found. 52 (2012) 539-549, https://doi.org/10.1016/j.sandf.2012.05.011

[308]

H. Yi, T. Zheng, Z. Jia, et al., Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria, J. Cryst. Growth 564 (2021) 126113, https://doi.org/10.1016/j.jcrysgro.2021.126113

[309]

T. Yu, H. Souli, Y. Péchaud, J.M. Fleureau, Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement - a review, Eur. J. Environ. Civil Eng. 26 (2022) 2218-2233, https://doi.org/10.1080/19648189.2020.1755370

[310]

A. Zamani, B.M. Montoya, Undrained monotonic shear response of MICP-treated silty sands, J. Geotech. Geoenviron. Eng. 144 (2018) 04018029, https://doi.org/10.1061/(asce)gt.1943-5606.0001861

[311]

A. Zamani, B.M. Montoya, M. Gabr, Investigating the challenges of in situ delivery of MICP in fine grain sands and silty sands, Can. Geotech. J. 56 (2019) 1889-1900.

[312]

Y. Zhang, H.X. Guo, X.H. Cheng, Role of calcium sources in the strength and microstructure of microbial mortar, Constr. Build. Mater 77 (2015) 160-167, https://doi.org/10.1016/j.conbuildmat.2014.12.040

[313]

J. Zhao, H. Tong, Y. Shan, et al., Effects of different types of fibers on the physical and mechanical properties of MICP-treated calcareous sand, Materials 14 (2021) 268, https://doi.org/10.3390/ma14020268

[314]

Q. Zhao, L. Li, C. Li, et al., Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease, J. Mater. Civil Eng. 26 (2014) 04014094, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013

[315]

T. Zhu, M. Dittrich, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review, Front. Bioeng. Biotechnol. 4 (2016) 1-21, https://doi.org/10.3389/fbioe.2016.00004

[316]

S.M.A. Zomorodian, H. Ghaffari, B.C. O’Kelly, Stabilisation of crustal sand layer using biocementation technique for wind erosion control, Aeolian Res 40 (2019) 34-41, https://doi.org/10.1016/j.aeolia.2019.06.001

AI Summary AI Mindmap
PDF (8304KB)

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/