Invertebrate community responses to biochar addition in NTFP-enriched Amazonian secondary forests

Pedro Ríos Guayasamín , Sandy M. Smith , Sean C. Thomas

Biochar ›› 2025, Vol. 7 ›› Issue (1) : 66

PDF
Biochar ›› 2025, Vol. 7 ›› Issue (1) : 66 DOI: 10.1007/s42773-025-00447-1
Original Research

Invertebrate community responses to biochar addition in NTFP-enriched Amazonian secondary forests

Author information +
History +
PDF

Abstract

Soil invertebrates contribute to critical ecosystem processes in tropical regions, being highly diverse yet poorly studied. The addition of pyrolyzed biomass (biochar) to tropical soils can increase forest productivity by enhancing the availability of P and micronutrients, but effects on the invertebrate community have received little attention. Here, we present a 3-year study of litter invertebrates captured in pitfall traps in secondary forests experimentally enriched with non-timber forest product (NTFP) species and amended with kiln and traditional mound biochars at 10 t ha−1 in the Ecuadorian Amazon in a poorer alluvial sandy soil, and a colluvial soil with higher nutrient content. Soil conditions and seasonality were the main determinants of soil invertebrate community structure in multivariate analyses; however, biochar treatment effects were also detectable. Predators (ants and spiders) and microbivores (especially Poduromorpha) were the dominant functional groups in the study, with predators increasing over the collection seasons and microbivores decreasing. Microbivores showed reduced abundance at high Al availability, which was reduced by biochar addition. In contrast, predators showed increased abundance with increasing soil Al, but this pattern was only pronounced in the poorer alluvial soil and mixed NTFP treatment. In the colluvial soil, with higher nutrient content, parasitoid wasps increased in abundance with biochar additions relative to controls, while isopods showed a positive response to kiln-made biochar in the mixed NTFP treatment only. The findings indicate responses of soil invertebrates, in particular Poduromorpha, ants, and parasitoid wasps, to biochar amendments, but with patterns that vary over time and that are dependent on the specific biochar used as well as the soil type.

Keywords

Tropical ecology / Functional groups / Seasonality / Forest succession / Environmental Sciences / Soil Sciences / Biological Sciences / Ecology

Cite this article

Download citation ▾
Pedro Ríos Guayasamín, Sandy M. Smith, Sean C. Thomas. Invertebrate community responses to biochar addition in NTFP-enriched Amazonian secondary forests. Biochar, 2025, 7(1): 66 DOI:10.1007/s42773-025-00447-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arcila HernándezLM, ToddEV, MillerGA, FredericksonME. Salt intake in amazonian ants: too much of a good thing?. Insectes Soc, 2012, 593425-432.

[2]

AshfordOS, FosterWA, TurnerBL, SayerEJ, SutcliffeL, TannerEVJ. Litter manipulation and the soil arthropod community in a lowland tropical rainforest. Soil Biol Biochem, 2013, 62: 5-12.

[3]

BarrosE, PashanasiB, ConstantinoR, LavelleP. Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biol Fertil Soils, 2002, 35: 338-347.

[4]

BarrosE, GrimaldiM, SarrazinM, ChauvelA, MitjaD, DesjardinsT, LavelleP. Soil physical degradation and changes in macrofaunal communities in Central Amazon. Appl Soil Ecol, 2004, 262157-168.

[5]

BasakBB, SarkarB, SahaA, SarkarA, MandalS, BiswasJK, WangH, BolanNS. Revamping highly weathered soils in the tropics with biochar application: what we know and what is needed. Sci Total Environ, 2022, 822: 1-13.

[6]

BassetY, CizekL, CuénoudP, DidhamRK, GuilhaumonF, MissaO, NovotnyV, ØdegaardF, RoslinT, SchmidlJ, TishechkinAK, WinchesterNN, RoubikDW, AberlencH-P, BailJ, BarriosH, BridleJR, Castaño-MenesesG, CorbaraB, LeponceM. Arthropod diversity in a tropical forest. Science, 2012, 33861131481-1484.

[7]

BassetY, Palacios-VargasJG, DonosoDA, Castaño-MenesesG, DecaënsT, LamarreGP, De LeónLF, RiveraM, García-GómezA, PerezF, BobadillaR, LopezY, RamirezJA, CruzMM, GalvánAA, Mejía-RecamierBE, BarriosH. Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. Eur J Soil Biol, 2020.

[8]

BatesD, MächlerM, BolkerBM, WalkerSC. Fitting linear mixed-effects models using lme4. J Stat Softw, 2015, 6711-48.

[9]

BatistaEMCC, ShultzJ, MatosTTS, FornariMR, FerreiraTM, SzpoganiczB, De FreitasRA, MangrichAS. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep, 2018.

[10]

Bellinger PF, Christiansen KA, Janssens F (2021) Checklist of the Collembola of the World. http://www.collembola.org

[11]

Blanco-CanquiH. Does biochar improve all soil ecosystem services?. GCB Bioenergy, 2021, 132291-304.

[12]

BolanS, SharmaS, MukherjeeS, KumarM, RaoCS, NatarajKC, SinghG, VinuA, BhowmikA, SharmaH, El-NaggarA, ChangSX, HouD, RinklebeJ, WangH, SiddiqueKHM, AbbottLK, KirkhamMB, BolanN. Biochar modulating soil biological health: a review. Sci Total Environ, 2024.

[13]

BrionesMJI, PanzacchiP, DaviesCA, InesonP. Contrasting responses of macro- and meso-fauna to biochar additions in a bioenergy cropping system. Soil Biol Biochem, 2020.

[14]

Brtnicky M, Datta R, Holatko J, Bielska L, Gusiatin ZM, Kucerik J, Hammerschmiedt T, Danish S, Radziemska M, Mravcova L, Fahad, S, Kintl A, Sudoma M, Ahmed N, Pecina V (2021) A critical review of the possible adverse effects of biochar in the soil environment. Sci Tot Environ 796. https://doi.org/10.1016/j.scitotenv.2021.148756

[15]

BulakP, Proc-PietrychaK, KaczorM, ZłotkoK, PolakowskiC, WiącekD, Waniak-NowickaH, ZiębaE, WaśkoA, OleszczukP, BieganowskiA. A novel type of biochar from chitinous Hermetia illucens waste with a built-in stimulating effect on plants and soil arthropods. Sci Rep, 2023.

[16]

BussW, HilberI, GrahamMC, MašekO. Composition of PAHs in biochar and implications for biochar production. Sustain Chem Eng, 2022, 10: 6755-6765.

[17]

CastracaniC, MaienzaA, GrassoDA, GenesioL, MalcevschiA, MigliettaF, VaccariFP, MoriA. Biochar-macrofauna interplay: searching for new bioindicators. Sci Total Environ, 2015, 536: 449-456.

[18]

ClayNA, DonosoDA, KaspariM. Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. Oecologia, 2015, 1772571-579.

[19]

CullineyTW. Role of arthropods in maintaining soil fertility. Agriculture (Switzerland), 2013, 34629-659.

[20]

da CostaVB, OguraAP, AlexandreDS, SoaresMB, AlleoniLRF, EspíndolaELG, da PintoTJS. How much biochar is safe? Exploring potential ecotoxicological consequences for soil invertebrates and plants. Appl Soil Ecol, 2024.

[21]

da SoaresMMA, AntonyLMMK, RoyVMJKA, NogueiraLB, NeryURS. Invertebrados edáficos em sítios de terra preta de índio e solos adjacentes na Amazônia Central. Igapó IFAM, 2011, 511-13

[22]

DahlsjöCAL, EggletonP, KitchingR. Tropical terrestrial invertebrates—where to from here?. Biotropica, 2020, 522392-395.

[23]

DemetrioWC, ConradoAC, AcioliANS, FerreiraAC, BartzMLC, JamesSW, da SilvaE, MaiaLS, MartinsGC, MacedoRS, StantonDWG, LavelleP, VelasquezE, ZangerléA, BarbosaR, Tapia-CoralSC, MunizAW, SantosA, FerreiraT, SegallaRF, DecaënsT, NadolnyHS, Peña-VenegasCP, MaiaCMBF, PasiniA, MotaAF, Taube JúniorPS, SilvaTAC, RebellatoL, de Oliveira JúniorRC, NevesEG, LimaHP, FeitosaRM, Vidal TorradoP, McKeyD, ClementCR, ShockMP, TeixeiraWG, MottaACV, MeloVF, DieckowJ, GarrastazuMC, ChubatsuLS, KilleP, BrownGG, CunhaL. A “Dirty” footprint: macroinvertebrate diversity in Amazonian anthropic soils. Glob Change Biol, 2021, 27194575-4591.

[24]

Denevan W (2009) As origens agrícolas da terra mulata na Amazônia. In: Teixeira WG, Kern DC, Madari BE, Lima HN,Woods W (eds) As Terras Pretas de ĺndio da Amazônia: Sua caracterização e uso deste conhecimento na criação de novas areas (pp. 82–86). Embrapa Amazônia Ocidental, MAPA. https://www.alice.cnptia.embrapa.br/handle/doc/684554. Accessed 20 Feb 2025

[25]

Domene X (2016) A critical analysis of meso- and macrofauna effects following biochar supplementation. In: Komang Ralebitso-Senior T (ed) Biochar application: essential soil microbial ecology. Elsevier Inc, pp 268–292. https://doi.org/10.1016/B978-0-12-803433-0.00011-4

[26]

EwersRM, BoyleMJW, GleaveRA, PlowmanNS, BenedickS, BernardH, BishopTR, BakhtiarEY, CheyVK, ChungAYC, DaviesRG, EdwardsDP, EggletonP, FayleTM, HardwickSR, HomatheviR, KitchingRL, KhooMS, LukeSH, MarchJJ, NilusR, PfeiferM, RaoSV, SharpAC, SnaddonJL, StorkNE, StruebigMJ, WearnOR, YusahKM, TurnerEC. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat Commun, 2015.

[27]

Fairhead J, Leach M (2009) Amazonian dark earths in Africa? In: Orr CH (ed) Amazonian dark earths: Wim Sombroek’s vision. Springer Netherlands, pp 265–278. https://doi.org/10.1007/978-1-4020-9031-8_13

[28]

FAO (1983) Making charcoal in earth mounds. In: Simple technologies for charcoal making: Forestry Paper 41 (Food Agriculture Organization). https://www.fao.org/3/X5328E/X5328E00.htm#Contents. Accessed 20 Feb 2025

[29]

FraserJ, TeixeiraW, FalcãoN, WoodsW, LehmannJ, JunqueiraAB. Anthropogenic soils in the Central Amazon: from categories to a continuum. Area, 2011, 433264-273.

[30]

GezahegnS, SainM, ThomasSC. Phytotoxic condensed organic compounds are common in fast but not slow pyrolysis biochars. Bioresour Technol Rep, 2021.

[31]

GlaserB, BirkJJ. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta, 2012, 82201239-51.

[32]

GlaserB, HaumaierL, GuggenbergerG, ZechW. The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 2001, 88137-41.

[33]

Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. https://doi.org/10.1016/S0146-6380(00)00044-9

[34]

GomesDGE. Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model?. PeerJ, 2022.

[35]

GriffithsHM, AshtonLA, ParrCL, EggletonP. The impact of invertebrate decomposers on plants and soil. New Phytol, 2021, 23162142-2149.

[36]

GrussI, TwardowskiJP, LatawiecA, Medyńska-JuraszekA, KrólczykJ. Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna. Environ Sci Pollut Res, 2019, 261818230-18239.

[37]

Hartig F (2022) _DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models_. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa. Accessed 20 February 2025

[38]

HassallM, MossA, DixieB, GilroyJJ. Interspecific variation in responses to microclimate by terrestrial isopods: implications in relation to climate change. ZooKeys, 2018, 20188015-24.

[39]

HeděnecP, JiménezJJ, MoradiJ, DomeneX, HackenbergerD, BarotS, FrossardA, OktabaL, FilserJ, KindlmannP, FrouzJ. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci Rep, 2022.

[40]

HothornT, BretzF, WestfallP. Simultaneous inference in general parametric models. Biometr J, 2008, 503346-363.

[41]

INAMHI (2025) Anuarios hidrometeorológicos (Instituto Nacional de Meteorología e Hidrología). https://servicios.inamhi.gob.ec/anuarios-metereologicos/. Accessed 20 Feb 2025

[42]

Inkscape Project (2020) Inkscape. https://inkscape.org. Accessed 20 Feb 2025

[43]

JacqueminJ, DrouetT, DelsinneT, RoisinY, LeponceM. Soil properties only weakly affect subterranean ant distribution at small spatial scales. Appl Soil Ecol, 2012, 62: 163-169.

[44]

JacqueminJ, MaraunM, RoisinY, LeponceM. Differential response of ants to nutrient addition in a tropical brown food web. Soil Biol Biochem, 2012, 46: 10-17.

[45]

JefferyS, AbalosD, ProdanaM, BastosAC, Van GroenigenJW, HungateBA, VerheijenF. Biochar boosts tropical but not temperate crop yields. Environ Res Lett, 2017, 1251-7.

[46]

JocquéR, Dipperaar-SchoemanASSpider families of the world (second), 2007TervurenRoyal Museum for Central Africa

[47]

KamauS, BarriosE, KaranjaNK, AyukeFO, LehmannJ. Spatial variation of soil macrofauna and nutrients in tropical agricultural systems influenced by historical charcoal production in South Nandi, Kenya. Appl Soil Ecol, 2017, 119March286-293.

[48]

KamauS, KaranjaNK, AyukeFO, LehmannJ. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol Fertil Soils, 2019, 557661-673.

[49]

KaspariM, YanoviakSP. Biogeochemistry and the structure of tropical brown food webs. Ecology, 2009, 90123342-3351.

[50]

KaspariM, BujanJ, WeiserMD, NingD, MichaletzST, ZhiliH, EnquistBJ, WaideRB, ZhouJ, TurnerBL, WrightSJ. Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology, 2017, 9882019-2028.

[51]

Kassambara A (2020) ggpubr: “ggplot2” based publication ready plots. R package version 0.5.0. https://CRAN.R-project.org/package=ggpubr. Accessed 20 Feb 2025

[52]

KendallLK, WardDF. Habitat determinants of the taxonomic and functional diversity of parasitoid wasps. Biodivers Conserv, 2016, 25101955-1972.

[53]

KocsisT, RingerM, BiróB. Characteristics and applications of biochar in soil–plant systems: a short review of benefits and potential drawbacks. Appl Sci, 2022.

[54]

LamarreGPA, HéraultB, FinePVA, VedelV, LupoliR, MesonesI, BaralotoC. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. J Anim Ecol, 2016, 851227-239.

[55]

LassauSA, HochuliDF. Wasp community responses to habitat complexity in Sydney sandstone forests. Austral Ecol, 2005, 302179-187.

[56]

Lee S (2021) Meso and macrofauna responses to biochar in urban soils. Master thesis, Master of Ecosystem Science and Management, University of Michigan

[57]

LehmannJ, RilligMC, ThiesJ, MasielloCA, HockadayWC, CrowleyD. Biochar effects on soil biota—a review. Soil Biol Biochem, 2011, 4391812-1836.

[58]

Lenth RV, Buerkner P, Herve M, Love J, Miguez F, Riebl H, Singmann H (2022) Package ‘emmeans’, pp 1–89. https://doi.org/10.1080/00031305.1980.10483031

[59]

LeviHW, LeviLR, StrekalovskyNSpiders and their kin (revised edition 2001), 2001New YorkGolden Guides from St. Martin’s Press

[60]

LiT, JiaoY, LiuT, GuH, LiZ, WangS, LiuJ. Effects of biochar addition on soil fauna communities—a meta-analysis. Soil Use Manag, 2024.

[61]

LiuS, HuJ, BehmJE, HeX, GanJ, YangX. Nitrogen addition changes the trophic cascade effects of spiders on a detrital food web. Ecosphere, 2018.

[62]

LiuS, MengY, BehmJE, ZhangW, FuS. Canopy nitrogen addition affects ground-dwelling spider assemblages and trophic position. Insect Conserv Divers, 2022.

[63]

MaC, ZhangR, HeZ, SuP, WangL, YaoY, ZhangX, LiuX, YangF. Biochar alters the soil fauna functional traits and community diversity: a quantitative and cascading perspective. J Hazard Mater, 2024.

[64]

MaaßS, HückelheimR, RilligMC. Collembola laterally move biochar particles. PLoS ONE, 2019.

[65]

MAE (2013) Sistema de clasificación de los ecosistemas del Ecuador continental (Ministerio del Abiente del Ecuador. Subsecretaría de Patrimonio Natural. First). https://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/09/LEYENDA-ECOSISTEMAS_ECUADOR_2.pdf. Accessed 20 Feb 2025

[66]

McCaryMA, SchmitzOJ. Invertebrate functional traits and terrestrial nutrient cycling: insights from a global meta-analysis. J Anim Ecol, 2021, 9071714-1726.

[67]

McGeeKM, PorterTM, WrightM, HajibabaeiM. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci Rep, 2020.

[68]

McGlynnTP, PoirsonEK. Ants accelerate litter decomposition in a Costa Rican lowland tropical rain forest. J Trop Ecol, 2012, 285437-443.

[69]

McGlynnTP, FawcettRM, ClarkDA. Litter biomass and nutrient determinants of ant density, nest size, and growth in a Costa Rican tropical wet forest. Biotropica, 2009, 412234-240.

[70]

Mechler MA (2018) The effect of biochar on soil health and greenhouse gas emissions in a conventional temperate agricultural system. Master thesis, Master of Science in Geography, University of Waterloo

[71]

MittelbachGG, McGillBJMittelbachGG, McGillBJ. Community ecology. Community ecology, 20192OxfordOxford University Press.

[72]

MuhammadLN. Guidelines for repeated measures statistical analysis approaches with basic science research considerations. J Clin Investig, 2023.

[73]

NavarreteAA, CannavanFS, TaketaniRG, TsaiSM. A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity, 2010, 25787-809.

[74]

NepalJ, AhmadW, MunsifF, KhanA, ZouZ. Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Front Environ Sci, 2023.

[75]

NesselMP, KonnovitchT, RomeroGQ, GonzálezAL. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biol Rev, 2021, 9662617-2637.

[76]

ObiaA, LyuJ, MulderJ, MartinsenV, CornelissenG, SmebyeAB, ZimmermanAR. Biochar dispersion in a tropical soil and its effects on native soil organic carbon. PLoS ONE, 2024.

[77]

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022) _vegan: Community Ecology Package_. R package (version 2.6-4)

[78]

PalansooriyaKN, WongJTF, HashimotoY, HuangL, RinklebeJ, ChangSX, BolanN, WangH, OkYS. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 2019, 113-22.

[79]

PegueroG, SardansJ, AsensioD, Fernández-MartínezM, Gargallo-GarrigaA, GrauO, LlusiàJ, MargalefO, MárquezL, OgayaR, UrbinaI, CourtoisEA, StahlC, Van LangenhoveL, VerrycktLT, RichterA, JanssensIA, PeñuelasJ. Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proc R Soc B Biol Sci, 2019, 28619101-9.

[80]

Ríos GuayasamínP, SmithSM, ThomasSC. Biochar effects on NTFP-enriched secondary forest growth and soil properties in Amazonian Ecuador. J Environ Manag, 2024, 350: 119068.

[81]

RousseauGX, DeheuvelsO, CelentanoD, AriasIR, Hernández-GarcíaLM, SomarribaE. Shade tree identity rather than diversity influences soil macrofauna in cacao-based agroforestry systems. Pedobiologia, 2021.

[82]

SánchezD, MerloJ, HaroR, AcostaM, BernalGEspinosaJ, MorenoJ, BernalG. Soils from the Amazonia. The soils of Ecuador, 2018ChamSpringer International113-137.

[83]

SantosEMR, FranklinE, LuizãoFJ. Litter manipulation and associated invertebrate fauna in secondary forest, central Amazonia, Brazil. Acta Oecol, 2008, 343274-284.

[84]

SayadE, HosseiniSM, HosseiniV, Sallehe-ShooshtariMH. Soil macrofauna in relation to soil and leaf litter properties in tree plantations. J for Sci, 2012, 584170-180.

[85]

SayerEJ, SutcliffeLME, RossRIC, TannerEVJ. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: the role of habitat space vs. nutrient concentrations. Biotropica, 2010, 422194-200.

[86]

SerraRT, SantosCD, RousseauGX, TrianaSP, Muñoz GutiérrezJA, Burgos GuerreroJE. Fast recovery of soil macrofauna in regenerating forests of the Amazon. J Anim Ecol, 2021, 9092094-2108.

[87]

SessionsJ, SmithD, TrippeKM, FriedJS, BaileyJD, PetitmermetJH, HollamonW, PhillipsCL, CampbellJD. Can biochar link forest restoration with commercial agriculture?. Biomass Bioenergy, 2019, 123: 175-185.

[88]

SheilD, BasukiI, GermanL, KuyperTW, LimbergG, PuriRK, SellatoB, van NoordwijkM, WollenbergE. Do anthropogenic dark earths occur in the interior of Borneo? Some initial observations from East Kalimantan. Forests, 2012, 32207-227.

[89]

SkvarlaMJ, LarsonJL, DowlingAPG. Pitfalls and preservatives: a review. JESO, 2014, 145: 15-43

[90]

SoongJL, JanssensIA, GrauO, MargalefO, StahlC, Van LangenhoveL, UrbinaI, ChaveJ, DourdainA, FerryB, FreyconV, HeraultB, SardansJ, PeñuelasJ, VerbruggenE. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci Rep, 2020.

[91]

SunX, MarianF, BluhmC, MaraunM, ScheuS. Response of Collembola to the addition of nutrients along an altitudinal gradient of tropical montane rainforests. Appl Soil Ecol, 2020.

[92]

Sun H, Lee J, Chen X, Zhuang J (2020a) Estimating water retention for wide ranges of pressure head and bulk density based on a fractional bulk density concept. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-73890-8

[93]

ThomasSC, RuanR, GaleNV, GezahegnS. Phytotoxicity and hormesis in common mobile organic compounds in leachates of wood-derived biochars. Biochar, 2024.

[94]

TriplehornC, JohnsonN. Borror and Delong’s introduction of the study of insects. Camden Fourth Ser, 2005.

[95]

Viechtbauer W (2010) Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36(3):1–48. https://doi.org/10.18637/jss.v036.i03

[96]

VijayV, ShreedharS, AdlakK, PayyanadS, SreedharanV, GopiG, Sophia van der VoortT, MalarvizhiP, YiS, GebertJ, AravindPV. Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front Energy Res, 2021, 9: 1-21.

[97]

WangC, KuzyakovY. Soil organic matter priming: the pH effects. Glob Change Biol, 2024.

[98]

WangY, NaumannU, WrightST, WartonDI. mvabund—An R package for model-based analysis of multivariate abundance data. Methods Ecol Evol, 2012, 33471-474.

[99]

WarrenMW, ZouX. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manag, 2002, 1701–3161-171.

[100]

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org

[101]

YangX, ShaoM, LiT. Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma, 2020.

[102]

ZhaoY, LiX, LiY, BaoH, XingJ, ZhuY, NanJ, XuG. Biochar acts as an emerging soil amendment and its potential ecological risks: a review. Energies, 2023.

[103]

ZingerL, TaberletP, SchimannH, BoninA, BoyerF, De BarbaM, GaucherP, GiellyL, Giguet-CovexC, IribarA, Réjou-MéchainM, RayéG, RiouxD, SchillingV, TymenB, ViersJ, ZouitenC, ThuillerW, CoissacE, ChaveJ. Body size determines soil community assembly in a tropical forest. Mol Ecol, 2019, 283528-543.

Funding

Connaught Fund

Canadian Natural Sciences and Engineering Research Council

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

285

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/