Resurrection and characterization of ancestral xylose transporters enhance the capability of xylose uptake in the mixed sugar co-fermentation of Recombinant Saccharomyces cerevisiae

Peining Zhang , Zhaoqing He , Huanan Li , Zhengbing Jiang

Bioresources and Bioprocessing ›› 2026, Vol. 13 ›› Issue (1) : 1

PDF
Bioresources and Bioprocessing ›› 2026, Vol. 13 ›› Issue (1) :1 DOI: 10.1186/s40643-025-00995-1
Research
research-article

Resurrection and characterization of ancestral xylose transporters enhance the capability of xylose uptake in the mixed sugar co-fermentation of Recombinant Saccharomyces cerevisiae

Author information +
History +
PDF

Abstract

Ancestral sequence reconstruction (ASR) offers a revolutionary approach to resurrect functional proteins, yet its potential in transporter engineering remains underexplored. Here, we pioneered the application of ASR to reconstructing ancestral xylose transporters, addressing the persistent challenge of glucose-mediated inhibition of xylose uptake in Saccharomyces cerevisiae during xylose co-fermentation. Through rigorous ASR analysis, we reconstructed ancestral xylose transporters (Xt) and selected two candidates—Xt3 (approximately 140 million years old) and Xt7 (approximately 40 million years old)—based on their phylogenetic positioning, degree of sequence divergence from extant homologs, and predicted structural integrity. Functional characterization demonstrated that both Xt3 and Xt7 significantly enhance xylose uptake efficiency and mitigate glucose-induced repression. In fermentation experiments with mixed sugars (40 g/L xylose and 40 g/L glucose) within 72 h, recombinant S. cerevisiae expressing Xt3 achieved 22.75 g/L xylose consumption, surpassing the benchmark N326FXltr1p (16.22 g/L) by 40.27% and outperforming Xt7 (21.36 g/L) by 6.51%, highlighting Xt3 as the most efficient transporter. Molecular docking suggested a potentially more favorable binding mode for xylose in the ancestral transporters (binding affinity: −3.68 kcal/mol for Xt3 vs. −3.15 kcal/mol for N326FXltr1p). Molecular dynamics simulations further demonstrated that the ancestral transporters formed complexes with xylose that exhibited faster convergence to a stable state and maintained significantly greater conformational stability throughout the simulation compared to the N326FXltr1p complex. These computational insights provide a plausible structural basis for their enhanced performance. This work contributes to the advancement of lignocellulosic biorefinery technology and provides a practical reference for resurrecting other valuable proteins using ASR’.

Keywords

Ancestral sequence reconstruction / Xylose transporter / Glucose/xylose co-utilization / Saccharomyces cerevisiae

Cite this article

Download citation ▾
Peining Zhang, Zhaoqing He, Huanan Li, Zhengbing Jiang. Resurrection and characterization of ancestral xylose transporters enhance the capability of xylose uptake in the mixed sugar co-fermentation of Recombinant Saccharomyces cerevisiae. Bioresources and Bioprocessing, 2026, 13(1): 1 DOI:10.1186/s40643-025-00995-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bae JH, Kim MJ, Sung BH, Jin YS, Sohn JH. Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. Biotechnol Biofuels, 2021

[2]

Barkman TJ. Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci, 2024, 379(1914 20230348

[3]

Barruetabeña N, Alonso-Lerma B, Galera-Prat A, Joudeh N, Barandiaran L, Aldazabal L, Arbulu M, Alcalde M, De Sancho D, Gavira JA, et al.. Resurrection of efficient Precambrian endoglucanases for lignocellulosic biomass hydrolysis. Commun Chem, 2019

[4]

Bueno JGR, Borelli G, Corrêa TLR, Fiamenghi MB, José J, de Carvalho M, de Oliveira LC, Pereira GAG, Dos Santos LV. Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinant Saccharomyces cerevisiae strains at high xylose concentrations. Biotechnol Biofuels, 2020, 13 145

[5]

Chen S, Xu Z, Ding B, Zhang Y, Liu S, Cai C, Li M, Dale BE, Jin M. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery. Sci Adv, 2023, 9(5 eadd8835

[6]

Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 2011, 27(8): 1164-1165

[7]

Demeke MM, Foulquié-Moreno MR, Dumortier F, Thevelein JM. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet, 2015, 11(3): e1005010

[8]

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol, 1981, 17(6368-376

[9]

Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral resurrection and directed evolution of fungal Mesozoic laccases. Appl Environ Microbiol, 2020

[10]

Gomez-Fernandez BJ, Garcia-Ruiz E, Martin-Diaz J, Gomez de Santos P, Santos-Moriano P, Plou FJ, Ballesteros A, Garcia M, Rodriguez M, Risso VA, et al.. Directed -in vitro- evolution of precambrian and extant Rubiscos. Sci Rep, 2018, 8(1): 5532

[11]

Gumulya Y, Gillam EM. Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J, 2017, 474(11-19

[12]

Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 2002, 148(Pt 9): 2783-2788

[13]

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587

[14]

Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res, 2017

[15]

Huang M, Cui X, Zhang P, Jin Z, Li H, Liu J, Jiang Z. Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production.. Prep Biochem Biotechnol, 2024, 54(8): 1058-1067

[16]

Jafari S, Hematian Sourki A. Development and validation of the HPLC method for simultaneous quantification of glucose and xylose in sugar cane bagasse extract. J Chromatogr Sci, 2024, 62(8): 776-782

[17]

Jiang Y, Shen Y, Gu L, Wang Z, Su N, Niu K, Guo W, Hou S, Bao X, Tian C. <article-title update="added"> Identification and characterization of an efficient <scp>d</scp> -xylose transporter in Saccharomyces cerevisiae. J Agric Food Chem, 2020, 68(9): 2702-2710

[18]

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30(4): 772-780

[19]

Ke M, Yuan Y, Jiang X, Yan N, Gong H. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE. PLoS Comput Biol, 2017, 13(6): e1005603

[20]

Kogje A, Ghosalkar A. Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech, 2016, 6(2 127

[21]

Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol, 2017, 34(71812-1819

[22]

Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, den Op HJ, van Dijken JP, Pronk JT. High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?>. FEMS Yeast Res, 2003, 4(1): 69-78

[23]

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol, 2008, 25(7): 1307-1320

[24]

Leandro MJ, Gonçalves P, Spencer-Martins I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J, 2006, 395(3): 543-549

[25]

Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2002, 60(1–2): 186-191

[26]

Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1): W293-w296

[27]

Li H, Schmitz O, Alper HS. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Microbiol Biotechnol, 2016, 100(23): 10215-10223 From NLM

[28]

Luo X, Tao X, Ran G, Deng Y, Wang H, Tan L, Pang Z. Molecular modification enhances xylose uptake by the sugar transporter KM_SUT5 of Kluyveromyces marxianus. Int J Mol Sci, 2024

[29]

Mascotti ML. Resurrecting enzymes by ancestral sequence reconstruction. Methods Mol Biol, 2022, 2397: 111-136

[30]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274

[31]

Nieves LM, Panyon LA, Wang X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol, 2015

[32]

Ning P, Yang GF, Hu LH, Sun JX, Shi LN, Zhou YH, Wang ZB, Yang JM. Recent advances in the valorization of plant biomass. Biotechnol Biofuels, 2021

[33]

Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res, 2020

[34]

Perez-Jimenez R, Inglés-Prieto A, Zhao ZM, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, Garcia-Manyes S, Kappock TJ, Tanokura M, Holmgren A, et al.. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol, 2011, 18(5): 592-596

[35]

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, et al.. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014, 344(6185): 709-729

[36]

Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep, 2016, 6: 19512

[37]

Risso VA, Sanchez-Ruiz JM, Ozkan SB. Biotechnological and protein-engineering implications of ancestral protein resurrection. Curr Opin Struct Biol, 2018, 51: 106-115

[38]

Rojas SAT, Schadeweg V, Kirchner F, Boles E, Oreb M. Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high Pentose transport capacity. Sci Rep, 2021, 11(1): 24404 From NLM

[39]

Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2009, 82(1123-130

[40]

Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol, 2007, 74(5): 1041-1052

[41]

Sharma NK, Behera S, Arora R, Kumar S, Sani RK. Xylose transport in yeast for lignocellulosic ethanol production: current status. J Biosci Bioeng, 2018, 125(3): 259-267

[42]

Singh N, Singhania RR, Nigam PS, Dong CD, Patel AK, Puri M. Global status of lignocellulosic biorefinery: challenges and perspectives, 2022Bioresour Technol

[43]

Su B, Song D, Zhu H. Metabolic engineering of Saccharomyces cerevisiae for enhanced carotenoid production from Xylose-Glucose mixtures. Front Bioeng Biotechnol, 2020, 8: 435

[44]

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596-1599

[45]

Taveira IC, Carraro CB, Nogueira KMV, Pereira LMS, Bueno JGR, Fiamenghi MB, Dos Santos LV, Silva RN. Structural and biochemical insights of xylose MFS and SWEET transporters in microbial cell factories: challenges to lignocellulosic hydrolysates fermentation. Front Microbiol, 2024, 15 1452240

[46]

Tjo H, Conway JM. Sugar transport in thermophiles: bridging lignocellulose deconstruction and bioconversion. J Ind Microbiol Biotechnol, 2024

[47]

Valle M, Schabauer H, Pacher C, Stockinger H, Stamatakis A, Robinson-Rechavi M, Salamin N. Optimization strategies for fast detection of positive selection on phylogenetic trees. Bioinformatics, 2014, 30(81129-1137

[48]

Wang C, Shen Y, Hou J, Suo F, Bao X. An assay for functional xylose transporters in Saccharomyces cerevisiae. Anal Biochem, 2013, 442(2): 241-248

[49]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al.. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: 296-303

[50]

Young EM, Tong A, Bui H, Spofford C, Alper HS. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A, 2014, 111(1): 131-136

Funding

Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 22308093)

the China National Key Research and Development Program (2020YFA0908400, 2023YFD1201600)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/