Deciphering the mechanisms of antibacterial and antibiofilm potential of phenolic compounds against Serratia marcescens

Pooja Pandey , Sirisha L. Vavilala

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 147

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :147 DOI: 10.1186/s40643-025-00988-0
Research
research-article

Deciphering the mechanisms of antibacterial and antibiofilm potential of phenolic compounds against Serratia marcescens

Author information +
History +
PDF

Keywords

Coumaric acid / Syringic acid / Apoptosis-like cell death / Biofilm inhibition / Biofilm eradication / Quorum sensing / Swimming and swarming motility / Virulence factors

Cite this article

Download citation ▾
Pooja Pandey, Sirisha L. Vavilala. Deciphering the mechanisms of antibacterial and antibiofilm potential of phenolic compounds against Serratia marcescens. Bioresources and Bioprocessing, 2025, 12(1): 147 DOI:10.1186/s40643-025-00988-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah M, Khelissa O, Ibrahim A, Benoliel C, Heliot L, Dhulster P, Chihib NE. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int J Food Microbiol, 2015, 214: 38-47.

[2]

Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia Species collected from Benin. LWT, 2022

[3]

Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol, 2010

[4]

ARC Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis (2022) Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0.

[5]

Aslam S. Effect of antibacterials on biofilms. Am J Infect Control, 2008, 36: S175.

[6]

Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 2016, 61: 156-164.

[7]

Beddiar H, Boudiba S, Benahmed M, Tamfu AN, Ceylan Ö, Hanini K, Kucukaydin S, Elomri A, Bensouici C, Laouer H, Akkal S, Boudiba L, Dinica RM. Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze Plants, 2021, 10(9): 1955

[8]

Bouyahya A, Abrini J, Dakka N, Bakri Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J Pharm Anal, 2019, 9: 301-311.

[9]

Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics. Antimicrob Agents Chemother, 2011, 55: 2655-2661.

[10]

Burt S. Essential oils: their antibacterial properties and potential applications in foods- -a review. Int J Food Microbiol, 2004, 94: 223-253.

[11]

Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol, 2009, 135: 144-151.

[12]

Carvalho MJ, et al. . Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbiol, 2022, 7: 1337-1347.

[13]

Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev, 2020

[14]

Chari N, Felix L, Selvaraj K, Renganathan K, Dhamodharan B, Manivel A, Naiyf SA, Arunachalam C, Sulaiman AA, Nooruddin T. Biofilm inhibitory potential of Chlamydomonas sp. extract against Pseudomonas aeruginosa. J Algal Biomass Util, 2014, 5: 74-81

[15]

Chen J, Lee E-W, Kuroda T, Mizushima T, Tsuchiya T. Multidrug resistance in Serratia marcescens and cloning of genes responsible for the resistance. Biol Pharm Bull, 2003, 26(3): 391-393.

[16]

Chen X, Yu F, Li Y, Lou Z, Toure SL, Wang H. The inhibitory activity of p-coumaric acid on quorum sensing and its enhancement effect on meat preservation. CyTA - J Food, 2020, 18(1): 61-67.

[17]

Choi H, Hwang J-S, Lee DG. Coprisin exerts antibacterial effects by inducing apoptosis-like death in Escherichia coli. Int Union Biochem Mol Biol, 2016, 68: 72-78. DOI:

[18]

Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs, 2005, 28(11): 1062-1068.

[19]

Coulthurst SJ, Williamson NR, Harris AKP, Spring DR, Salmond GPC. Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology, 2006, 152: 1899-1911.

[20]

Cui H, Bai M, Sun Y, Abdel-Samie MA-S, Lin L. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J Funct Foods, 2018, 48: 159-166.

[21]

Das T, Sharma PK, Busscher HJ, Vander Mei HC, Krom BP. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol, 2010, 76: 3405-3408.

[22]

Dengler V, Foulston L, DeFrancesco AS, Losick R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J Bacteriol, 2015, 197: 3779-3787.

[23]

Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: antibiotic resistance status, community-acquired infection and risk to human health. Int J Hyg Environ Health, 2022, 244114006

[24]

Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol, 2003, 154: 9-16.

[25]

Di Somma A, Recupido F, Cirillo A, Romano A, Romanelli A, Caserta S, Guido S, Duilio A. Antibiofilm properties of temporin-L on Pseudomonas fluorescens in static and in-flow conditions. Int J Mol Sci, 2020, 218526

[26]

Dincer S, Masume Uslu F, Delik A (2020) Antibiotic resistance in biofilm. Bacterial biofilms. IntechOpen https://doi.org/10.5772/intechopen.92388.

[27]

Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell, 2012, 46: 561-572.

[28]

Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol, 1996, 20: 127-136.

[29]

Eko Sukohidayat NH, Zarei M, Baharin BS, Manap MY. Purification and characterization of lipase produced by Leuconostoc mesenteroides Subsp. mesenteroides ATCC 8293 using an aqueous two-phase system (ATPS) composed of Triton X-100 and maltitol. Molecules, 2018, 231800

[30]

Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF mediated death pathway. PLoS Biol, 2012, 10e1001281

[31]

Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. Apoptosis-like death, an extreme SOS response in Escherichia coli. Mbio, 2014, 5e01426–e01414

[32]

Fu Y, Wang W, Zeng Q, Wang T, Qian W. Antibiofilm efficacy of luteolin against single and dual species of Candida albicans and Enterococcus faecalis. Front Microbiol, 2021, 12715156

[33]

Geier H, Mostowy S, Cangelosi GA, Behr MA, Ford TE. Autoinducer-2triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol, 2008, 74: 1798-1804.

[34]

Gokhale KM, Patravale V, Pingale R, Pandey P, Vavilala SL. Se-functionalized ZIF-8 nanoparticles: synthesis, characterization and disruption of biofilms and quorum sensing in Serratia marcescens. Biomed Mater, 2024

[35]

Gomes LC, Mergulhão FJ. SEM analysis of surface impact on biofilm antibiotic treatment. Scanning, 2017

[36]

Graziano TS, Cuzzullin MC, Franco GC, Schwartz-Filho HO, de Andrade ED, Groppo FC, Cogo-Müller K. Statins, and antimicrobial effects: simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS ONE, 2015, 10e0128098

[37]

Gutiérrez-Barranquero JA, Reen FJ, McCarthy RR, O’Gara F. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Appl Microbiol Biotechnol, 2015, 99: 3303-3316.

[38]

Hannig C, Follo M, Hellwig E, Al-Ahmad A. Visualization of adherent microorganisms using different techniques. J Med Microbiol, 2010, 59: 1-7.

[39]

Hejazi A, Falkiner FR. Serratia marcescens. J Med Microbiol, 1997, 46(11): 903-912.

[40]

Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol, 2019, 4: 1432-1442.

[41]

Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146: 2395-2407.

[42]

Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 2010, 35: 322-332.

[43]

Horng Y-T, Deng S-C, Daykin M, Soo P-C, Wei J-R, Luh K-T, Ho SW, Swift S, Lai HC, Williams P. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol, 2002, 45: 1655-1671.

[44]

Jacques M, Lebrun A, Foiry B, Dargis M, Malouin F. Effects of antibiotics on the growth and morphology of Pasteurella multocida. J Gen Microbiol, 1991, 137: 2663-2668.

[45]

Jagani S, Chelikani R, Kim DS. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling, 2009, 25: 321-324.

[46]

Karygianni L, et al. . Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol, 2020, 28: 668-681.

[47]

Kauffmann F, Møller V. On amino acid decarboxylases of Salmonella typesandon the KCN test. Acta Pathol Microbiol Scand, 1995, 36: 173-178.

[48]

Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol, 2010, 8: 634-644.

[49]

Khadar SM, Shunmugiah KP, Arumugam VR. Inhibition of quorum-sensing- dependent phenotypic expression in Serratia marcescens by marine sediment Bacillus spp. SS4. Ann Microbiol, 2012, 62: 443-447.

[50]

Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turk J Med Sci, 2015, 45: 919-924.

[51]

Lin TH, Wu CC, Tseng CY, Fang JH, Lin CT. Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. J Microbiol Immunol Infect, 2022, 55: 1255-1262.

[52]

Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med, 2014, 1411

[53]

M100 Performance Standards for Antimicrobial Susceptibility Testing, 29th ed, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2019.

[54]

Meena H, Mishra R, Ranganathan S, Sarma VV, Ampasala DR, Siddhardha B. Attenuation of quorum sensing mediated virulence factors production and biofilm formation in Pseudomonas aeruginosa PAO1 by Colletotrichum gloeosporioides HM3. Microb Pathog, 2021, 151104723

[55]

Michelutti L, Bulfoni M, Nencioni E. A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. J Microbiol Meth, 2020, 170105834

[56]

Milić BL, Djilas SM, Čanadanović-Brunet JM. Antioxidative activity of 122 phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem, 1998, 61: 443-447.

[57]

Minich A, Levarski Z, Mikul ́aˇsova ́ M, Straka M, Lipt ́akov ́ A, Stuchlík S. Complex analysis of vanillin and syringic acid as natural antimicrobial agents against Staphylococcus epidermidis biofilms. Int J Mol Sci, 2022, 231816

[58]

Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery of Staphylococcus implant infections in orthopedics. Fut Microbio, 2011, 6: 1329-1349.

[59]

Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals (Basel, Switzerland), 2023, 16(111615

[60]

Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem, 2009, 78: 119-146.

[61]

Nithya C, LewisOscar F, Kanaga S, Kavitha R, Bakkiyaraj D, Manivel A, Alharbi NS, Chinnathambi A, Alharbi SA, Thajuddin N. Biofilm inhibitory potential of chlamydomonas Sp extract against pseudomonas aeruginosa. J Algal Biomass Utln, 2014, 5: 74-81

[62]

Norton TA, Thompson RC, Pope J, Veltkamp CJ, Banks B, Howards V, Hawkins SJ. Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat Microb Ecol, 1998, 16: 199-204.

[63]

Pandey P, Meher K, Falcao B, Lopus M, Sirisha VL. Tryptone-stabilized silver nanoparticles’ potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. J Bio Inorg Chem, 2022, 282): 139-152.

[64]

Pandey P, Rao L, Shekhar BR, Das DK, Vavilala SL. Molecular insights into flavone-mediated quorum sensing interference: a novel strategy against Serratia marcescens biofilm-induced antibiotic resistance. Chem Biol Interact, 2024, 396111027

[65]

Pandey P, Rao L, Shekhar BR, Das D, Sirisha VL. Molecular insights into flavone-mediated quorum sensing interference: a novel strategy against Serratia marcescens biofilm-induced antibiotic resistance. Chem Biol Interact, 2024, 396111027

[66]

Pattnaik S, Barik S, Muralitharan G, Busi S. Ferulic acid encapsulated chitosan- tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol, 2018, 12: 1056-1061.

[67]

Ray C, Shenoy AT, Orihuela CJ, González-Juarbe N. Killing of Serratia marcescens biofilms with chloramphenicol. Ann Clin Microbiol Antimicrob, 2017, 16: 19

[68]

Raza A, Xu X, Xia L, Xia C, Tang J, Ouyang Z. Quercetin-Iron complex: synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. J Fluoresc, 2023, 26: 2023-2031.

[69]

Re B, Del Sgorbati B, Miglioli M, Palenzona D. Adhesion, auto aggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol, 2001, 31: 438-442

[70]

Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem, 2003, 51(10): 2866-2887.

[71]

Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2012, 2a012427

[72]

Sabtu N, Enoch DA, Brown NM (2015) Antibiotic resistance: what, why, where, when and how? Br Med Bull ldv041. https://doi.org/10.1093/bmb/ldv041.

[73]

Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 2023, 111946

[74]

Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial resistance: a growing serious threat for global public health. Healthcare (Basel), 2023, 5(131946

[75]

Salini R, Pandian SK. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog Dis, 2015

[76]

Sasirekha B, Megha D, Soujanya SR. Study on effect of different plant extracts on microbial biofilms. Asian J Biotechnol, 2015, 7: 1-12.

[77]

Sethupathy S, Sathiyamoorthi E, Kim YG, Lee JH, Lee J. Antibiofilm and anti virulence properties of indoles against Serratia marcescens. Front Microbiol, 2020, 11584812

[78]

Sethupathy S, Sathiyamoorthi E, Sathiyamoorthi E, Kim Y-G, Lee J-H. Antibiofilm and antivirulence properties of indoles against Serratia marcescens. Front Microbiol, 2020, 112020

[79]

Shahidi F, Zhong Y. Novel antioxidants in food quality preservation and health promotion. Eur J Lipid Sci Technol, 2010, 112: 930-940.

[80]

Shaikh SA, Patel B, Priyadarsini IK, Vavilala SL. Combating planktonic and biofilm growth of Serratia marcescens by repurposing Ebselen. Int Microbiol, 2023, 26: 693-704.

[81]

Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem, 1994, 269: 8022-8028.

[82]

Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem Rev J, 2016, 116: 9162-9236.

[83]

Sorongon ML, Bloodgood RA, Burchard RP. Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria. Appl Environ Microbiol, 1991, 57: 3193-3199.

[84]

Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: a food safety concern. Food Control, 2013, 31: 572-585.

[85]

Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol, 2002, 292: 107-113.

[86]

Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358: 135-138.

[87]

Tajani AS, Amiri Tehranizadeh Z, Pourmohammad A, Pourmohammad A, Iranshahi M, Farhadi F, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing and antibiofilm activity of coumarin derivatives against Pseudomonas aeruginosa PAO1: insights from in vitro and in silico studies. Iran J Basic Med Sci, 2023, 264): 445-452.

[88]

Tan BKH, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: a review. Curr Med Chem, 2004, 11(11): 1423-1430.

[89]

Tang C, Chen J, Zhang L, Zhang R, Zhang S, Ye S, Zhao Z, Yang D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int J Med Microbiol, 2020, 310151435

[90]

Van RH, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev, 2007, 31: 407-424.

[91]

Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 2019, 365eaaw1944

[92]

Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev, 2007, 31: 407-424.

[93]

Vishwakarma J, Sirisha VL. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyii. Appl Microbiol Biotechnol, 2020, 104: 6299-6314.

[94]

Vishwakarma J, Waghela B, Falcao B, Vavilala SL. Algal polysaccharide’s potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms. Appl Biochem Biotechnol, 2022, 194: 671-693.

[95]

Wang D, Jin Q, Xiang H, Wang W, Guo N, Zhang K, Tang X, Meng R, Feng H, Liu L, Wang X, Liang J, Shen F, Xing M, Deng X, Yu L. Transcriptional and functional analysis of the effects of magnolol: inhibition of autolysis and biofilms in Staphylococcus aureus. PLoS ONE, 2011, 6(10e26833

[96]

Warraich AA, Mohammed AR, Perrie Y, Hussain M, Gibson H, Rahman A. Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci Rep, 2020, 10: 9021D.

[97]

Wright GD. Q&a: Antibiotic resistance: where does it come from and what can we do about it?. BMC Biol, 2010, 81): 123.

[98]

Wu Y, Bai J, Zhong K, Huang Y, Qi H, Jiang Y, Gao H. Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 2016, 211084

[99]

Yan V, Gu S, Shi Y, Cui X, Wen S, Ge J. The effect of emodin on Staphylococcus aureus strains in planktonic form and biofilm formation in vitro. Arch Microbiol, 2017, 199: 1267-1275.

[100]

Yazıcı BC, Bakhedda N, Akçelik N. Effect of nisin and p-coumaric acid on autoinducer-2 activity, biofilm formation, and sprE expression of Enterococcus faecalis. Braz J Microbiol, 2023, 54(2): 601-608.

[101]

Yi L, Jin M, Li J, Grenier D, Wang Y. Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol, 2020, 104(20): 8649-8660.

[102]

Yun DG, Lee DG. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol, 2016, 100(12): 5505-5514.

[103]

Zhang Y, Sass A, Van Acker H, Wille J, Verhasselt B, Van Nieuwerburgh F, Kaever V, Crabbé A, Coenye T. Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Front Microbiol, 2018, 9: 1952-1962.

[104]

Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Gu'erin. J Nanobiotechnol, 2012, 10: 19

Funding

DAE- Centre for Excellence in Basic Sciences (CEBS)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/