Comparison of poly-3-hydroxybutyrate (P3HB) synthesis by Bacillus cereus and Azotobacter vinelandii OP: effect of agitation on the accumulation and physicochemical properties of the biopolymer

Isabo Morales-Núñez , Marcela Cancino , Eric Pérez , Ricardo I. Castro , Maribel Mamani , Howard Ramírez-Malule , Álvaro Díaz-Barrera , Rodrigo Andler

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 151

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :151 DOI: 10.1186/s40643-025-00978-2
Research
research-article

Comparison of poly-3-hydroxybutyrate (P3HB) synthesis by Bacillus cereus and Azotobacter vinelandii OP: effect of agitation on the accumulation and physicochemical properties of the biopolymer

Author information +
History +
PDF

Abstract

Poly-3-hydroxybutyrate (P3HB) is a biodegradable thermoplastic polyester with mechanical and thermal properties comparable to those of petrochemical-based plastics. In this study, the synthesis of P3HB by Bacillus cereus ATCC 14579 and Azotobacter vinelandii OP ATCC 13705 in complex media under different agitation conditions and cultivation times was evaluated. The growth kinetics of each microorganism responded differently to changes in agitation patterns. Maximum cell concentrations of 2.4 g L−1 and 4.3 g L−1 were achieved at 200 rpm (24 h) for B. cereus and 150 rpm (48 h) for A. vinelandii, respectively. While B. cereus reached an accumulation of 31.3% (0.37 g P3HB L−1), A. vinelandii OP achieved 55.8% (2.3 g P3HB L−1). The biopolymer was characterized by ATR-FTIR, with a prominent carbonyl (C = O) stretching vibration observed at 1724 cm−1. SEC-HPLC analysis revealed mean molecular weights (MMW) weights of 80,050 g mol−1 to 116,960 g mol−1 for B. cereus and from 75,805 to 111,000 g mol−1 for A. vinelandii OP. TGA/DSC analysis revealed that higher agitation rates decrease crystallinity and thermal stability by altering polymer chain alignment. The volumetric oxygen transfer coefficient (kLa) confirmed the role of oxygen availability on P3HB. These results highlight two promising strains with distinct metabolic behaviors and strong potential for scale-up in P3HB production.

Graphical abstract

Keywords

Azotobacter vinelandii OP / Agitation rate / Bacillus cereus / kLa / P3HB / Poly-3-hydroxybutyrate

Cite this article

Download citation ▾
Isabo Morales-Núñez, Marcela Cancino, Eric Pérez, Ricardo I. Castro, Maribel Mamani, Howard Ramírez-Malule, Álvaro Díaz-Barrera, Rodrigo Andler. Comparison of poly-3-hydroxybutyrate (P3HB) synthesis by Bacillus cereus and Azotobacter vinelandii OP: effect of agitation on the accumulation and physicochemical properties of the biopolymer. Bioresources and Bioprocessing, 2025, 12(1): 151 DOI:10.1186/s40643-025-00978-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agus J, Kahar P, Abe H, et al. . Molecular weight characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab, 2006, 91: 1138-1146.

[2]

Bayarı S, Severcan F. FTIR study of biodegradable biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct, 2005, 744–747: 529-534.

[3]

Barrales-Cureño HJ, Reyes-Reyes C, Peña C, et al (2017) Alginate production by Azotobacter vinelandii as a virtual sensor to estimate effective shear rate on stirred tank fermenters. Egypt J Exp Biol Bot 13:321–321. https://doi.org/10.5455/egyjebb.20170805085116

[4]

Bher A, Mayekar PC, Auras RA, Schvezov CE. Biodegradation of biodegradable polymers in mesophilic aerobic environments. Int J Mol Sci, 2022, 23: 12165.

[5]

Campos DT, Zuñiga C, Passi A, et al. . Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metab Eng Commun, 2020, 11e00132

[6]

Castillo T, García A, Padilla-Córdova C, et al. . Respiration in Azotobacter vinelandii and its relationship with the synthesis of biopolymers. Electron J Biotechnol, 2020, 48: 36-45.

[7]

Chen H-J, Tsai T-K, Pan S-C, et al. . The master transcription factor Spo0A is required for poly(3-hydroxybutyrate) (PHB) accumulation and expression of genes involved in PHB biosynthesis in Bacillus thuringiensis. FEMS Microbiol Lett, 2010, 304: 74-81.

[8]

De Mello AFM, Vandenberghe LPDS, Machado CMB, et al. . Polyhydroxybutyrate production by Cupriavidus necator in a corn biorefinery concept. Bioresour Technol, 2023, 370128537

[9]

Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev MMBR, 2006, 70: 939-1031.

[10]

Díaí z-Barrera A, Silva P, Avalos R, Acevedo F (2009) Alginate molecular mass produced by Azotobacter vinelandii in response to changes of the O2 transfer rate in chemostat cultures. Biotechnol Lett 31:825–829. https://doi.org/10.1007/s10529-009-9949-9

[11]

Ellouze M, Buss Da Silva N, Rouzeau-Szynalski K, et al. . Modeling Bacillus cereus growth and cereulide formation in cereal-, dairy-, meat-, vegetable-based food and culture medium. Front Microbiol, 2021, 12639546

[12]

Faccin DJL, Rech R, Secchi AR, et al (2013) Influence of oxygen transfer rate on the accumulation of poly(3-hydroxybutyrate) by Bacillus megaterium. Process Biochem 48:420–425. https://doi.org/10.1016/j.procbio.2013.02.004

[13]

García A, Ferrer P, Albiol J, et al. . Metabolic flux analysis and the NAD(P)H/NAD(P)+ ratios in chemostat cultures of Azotobacter vinelandii. Microb Cell Fact, 2018, 17: 10.

[14]

Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv, 2009, 27: 153-176.

[15]

Gómez-Ríos D, Junne S, Neubauer P, et al. . Characterization of the metabolic response of Streptomyces clavuligerus to shear stress in stirred tanks and single-use 2D rocking motion bioreactors for clavulanic acid production. Antibiotics, 2019, 8: 168.

[16]

Hamdy SM, Danial AW, Gad El-Rab SMF, et al. . Production and optimization of bioplastic (polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol, 2022, 22: 183.

[17]

Heinrich D, Madkour MH, Al-Ghamdi MA, et al. . Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express, 2012, 2: 59.

[18]

Heyman B, Lamm R, Tulke H, et al. . Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Microb Cell Factories, 2019, 18: 78.

[19]

Izumi CMS, Temperini MLA. FT-raman investigation of biodegradable polymers: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Vib Spectrosc, 2010, 54: 127-132.

[20]

Juengert JR, Bresan S, Jendrossek D. Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile Red staining. Bio-Protoc, 2018, 8e2748

[21]

Kanjanachumpol P, Kulpreecha S, Tolieng V, Thongchul N. Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst Eng, 2013, 36: 1463-1474.

[22]

Kasu IR, Reyes-Matte O, Bonive-Boscan A, et al. . Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. Mbio, 2024, 15e00562–24

[23]

Khamplod T, Winterburn JB, Cartmell SH. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications. Sci Technol Adv Mater, 2022, 23: 895-910.

[24]

Klöckner W, Büchs J. Advances in shaking technologies. Trends Biotechnol, 2012, 30: 307-314.

[25]

Klöckner W, Gacem R, Anderlei T, et al. . Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J Biol Eng, 2013, 7: 28.

[26]

Lahiri D, Nag M, Dutta B, et al. . Bacterial cellulose: production, characterization, and application as antimicrobial agent. Int J Mol Sci, 2021, 2212984

[27]

Li H, O’Hair J, Thapa S, et al. . Proteome profile changes during poly-hydroxybutyrate intracellular mobilization in gram positive Bacillus cereus tsu1. BMC Microbiol, 2020, 20: 122.

[28]

Martínez MdelosÁM, Urzúa LS, Carrillo YA, et al. . Polyhydroxybutyrate metabolism in Azospirillum brasilense and its applications, a review. Polymers, 2023, 153027

[29]

Martínez-Herrera RE, Alemán-Huerta ME, Rutiaga-Quiñones OM, et al. . A comprehensive view of Bacillus cereus as a polyhydroxyalkanoate (PHA) producer: a promising alternative to Petroplastics. Process Biochem, 2023, 129: 281-292.

[30]

Medina A, Castillo T, Flores C, et al (2023) Production of alginates with high viscosifying powerand molecular weight by using the AT9 strain of Azotobacter vinelandii in batch cultures underdifferent oxygen transfer conditions. J Chem Technol Biotechnol 98:537–543. https://doi.org/10.1002/jctb.7267

[31]

Mitra R, Xu T, Chen G-Q, et al. . An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol, 2022, 15: 1446-1470.

[32]

Moradkhani H, Izadkhah M-S, Anarjan N, Abdi A. Oxygen mass transfer and shear stress effects on Pseudomonas putida BCRC 14365 growth to improve bioreactor design and performance. Environ Sci Pollut Res Int, 2017, 24: 22427-22441.

[33]

Natzke J, Noar J, Bruno-Bárcena JM. Azotobacter vinelandii nitrogenase activity, hydrogen production, and response to oxygen exposure. Appl Environ Microbiol, 2018, 84e01208–18

[34]

Parra-Palma C, Valdes C, Muñoz-Vera M, et al. . Assessing the modifications and degradation of cell wall polymers during the ripening process of Rubus ulmifolius Schott fruit. J Hortic Sci Biotechnol, 2024, 99: 471-479.

[35]

Peña C, Castillo T, García A, et al. . Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol, 2014, 7: 278-293.

[36]

Penkhrue W, Jendrossek D, Khanongnuch C, et al. . Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 2020, 15e0230443

[37]

Portugal-Nunes DJ, Pawar SS, Lidén G, Gorwa-Grauslund MF. Effect of nitrogen availability on the poly-3-d-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae. AMB Express, 2017, 7: 35.

[38]

San Miguel-González GdeJ, Alemán-Huerta ME, Martínez-Herrera RE, et al. . Alkaline-tolerant Bacillus cereus 12GS: a promising polyhydroxybutyrate (PHB) producer isolated from the north of Mexico. Microorganisms, 2024, 12863

[39]

Sashidhar B, Podile AR. Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microb Biotechnol, 2009, 2: 521-529.

[40]

Sathiyanarayanan G, Kiran GS, Selvin J, Saibaba G. Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol, 2013, 60: 253-261.

[41]

Salazar-Magallon JA, Murillo-Alonso KT, Garcia LL, et al (2016) Scale-up from a Shake Flask to a Bioreactor, Based on Oxygen Transfer for the Production of Spore-crystal Complexes from Bacillus thuringiensis.J Pure Appl Microbiol 10–2.

[42]

Segura D, Vite O, Romero Y, et al. . Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol, 2009, 191: 3142-3148.

[43]

Setubal JC, dos Santos P, Goldman BS, et al. . Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol, 2009, 191: 4534-4545.

[44]

Urtuvia V, Maturana N, Peña C, Díaz-Barrera A. Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Azotobacter vinelandii with different 3HV fraction in shake flasks and bioreactor. Bioprocess Biosyst Eng, 2020, 43: 1469-1478.

[45]

Velázquez-Sánchez C, Espín G, Peña C, Segura D. The modification of regulatory circuits involved in the control of polyhydroxyalkanoates metabolism to improve their production. Front Bioeng Biotechnol, 2020

[46]

Wu G, Cruz-Ramos H, Hill S, et al. . Regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii by CydR (Fnr). Sensitivity to oxygen, reactive oxygen species, and nitric oxide. J Biol Chem, 2000, 275: 4679-4686.

[47]

Yoneyama F, Yamamoto M, Hashimoto W, Murata K. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions. Bioengineered, 2015, 6: 209-217.

[48]

Zhou X, Zhang N, Xia L, et al. . ResDE two-component regulatory system mediates oxygen limitation-induced biofilm formation by Bacillus amyloliquefaciens SQR9. Appl Environ Microbiol, 2018, 84e02744–17

Funding

Agencia Nacional de Investigación y Desarrollo(Fondecyt 1231075)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/