Valorization of Caragana korshinskii Kom. using cooperative Aspergillus oryzae and Saccharomyces cerevisiae to produce fermented feed protein

Sasa Zuo , Jing Su , Fuqiang Zhang , Shuying Yu , Xiaohui Cao , Chuncheng Xu

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 128

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :128 DOI: 10.1186/s40643-025-00968-4
Research
research-article

Valorization of Caragana korshinskii Kom. using cooperative Aspergillus oryzae and Saccharomyces cerevisiae to produce fermented feed protein

Author information +
History +
PDF

Abstract

Caragana korshinskii Kom. represents a substantial biomass resource that can be converted into feed protein via microbial fermentation. This study aimed to improve the nutritional value of C. korshinskii through strain screening and substrate optimization. Amino acid content and in vitro digestibility were systematically investigated. Astral-DIA proteomics was employed to compare protein enrichment mechanisms underlying screened microbial involvement in substance conversion. The Aspergillus oryzae and Saccharomyces cerevisiae co-culture increased the true protein content of the optimized substrate by 50.6% to 67.9%, while the highest nitrogen conversion ratio (69.5%) was achieved with low-level supplementation of (NH4)2SO4. The relative abundances of hydroxyproline and lysine content increased by more than twice in the mixed fermentation. Proteomics analysis identified 291 differentially expressed proteins in the mixed culture versus A. oryzae alone, enriched in ribosome biogenesis; valine, leucine and isoleucine biosynthesis; galactose metabolism; amino acids biosynthesis and sulfur relay system. This study provided guidance for the high-value utilization of C. korshinskii and elucidated the differential protein enrichment pathways between A. oryzae, S. cerevisiae and their cocktail in utilizing C. korshinskii.

Keywords

Caragana Korshinskii kom. / Feed protein / Solid-state fermentation / Optimization / Proteomics

Cite this article

Download citation ▾
Sasa Zuo, Jing Su, Fuqiang Zhang, Shuying Yu, Xiaohui Cao, Chuncheng Xu. Valorization of Caragana korshinskii Kom. using cooperative Aspergillus oryzae and Saccharomyces cerevisiae to produce fermented feed protein. Bioresources and Bioprocessing, 2025, 12(1): 128 DOI:10.1186/s40643-025-00968-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai B, Qiu R, Wang Z, Liu Y, Bao J, Sun L, Liu T, Ge G, Jia Y. Effects of cellulase and lactic acid bacteria on ensiling performance and bacterial community of Caragana Korshinskii silage. Microorganisms, 2023, 11: 337

[2]

Bapat PM, Kundu S, Wangikar PP. An optimized method for Aspergillus Niger spore production on natural carrier substrates. Biotechnol Progr, 2003, 19: 1683-1688

[3]

Bátori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2015) Ethanol and protein from ethanol plant by-products using edible fungi neurospora intermedia and Aspergillus oryzae. Biomed Res Int 176371

[4]

Cech TR. The ribosome is a ribozyme. Science, 2000, 289: 878-879

[5]

Chen J, Cai Y, Wang Z, Xu Z, Zhuang W, Liu D, Lv Y, Wang S, Xu J, Ying H. Solid-state fermentation of corn straw using synthetic microbiome to produce fermented feed: the feed quality and conversion mechanism. Sci Total Environ, 2024, 920: 171034

[6]

Cukras AR, Southworth DR, Brunelle JL, Culver GM, Green R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA: tRNA complex. Mol Cell, 2003, 12: 321-328

[7]

Del Cerro C, Erickson E, Dong T, Wong AR, Eder EK, Purvine SO, Salvachúa D, et al.. Intracellular pathways for lignin catabolism in white-rot fungi. PNAS, 2021, 118: e2017381118

[8]

Du G, Tišma M, He B, Zhai X, Yuan C, Su Z, Shi J, Zhang B. Valorization of the Caragana waste via two-stage bioaugmentation: optimizing nutrition composition, palatability, and microbial contaminant control. J Bioresour Bioprod, 2024, 9: 518-533

[9]

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res, 2012, 41: D808-D815

[10]

Frias J, Song YS, Martínez-Villaluenga C, De Mejia EG, Vidal-Valverde C. Immunoreactivity and amino acid content of fermented soybean products. J Agric Food Chem, 2008, 56: 99-105

[11]

He C, Huang Y, Liu P, Wei J, Yang Y, Xu L, Xiao M. Transcriptome analysis of genes and metabolic pathways associated with nicotine degradation in Aspergillus oryzae 112822. BMC Genom, 2019, 20: 86

[12]

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009, 37: 1-13

[13]

Jia X, Xi B, Li M, Yang Y, Wang Y. Metaproteomics analysis of the functional insights into microbial communities of combined hydrogen and methane production by anaerobic fermentation from Reed straw. PLoS ONE, 2017, 12: e0183158

[14]

Ke W, Wang Y, Rinne M, de Oliveira Franco M, Li F, Lin Y, Zhang Q, Cai Y, Zhang G. Effects of lactic acid bacteria and molasses on the fermentation quality, in vitro dry matter digestibility, and microbial community of Korshinsk peashrub (Caragana Korshinskii Kom.) silages harvested at two growth stages. Grass Forage Sci, 2024, 79: 56-68

[15]

Li J, Liu B, Feng X, Zhang M, Ding T, Zhao Y, Wang C. Comparative proteome and volatile metabolome analysis of Aspergillus oryzae 3.042 and Aspergillus Sojae 3.495 during Koji fermentation. Food Res Int, 2023, 165: 112527

[16]

Liang Z, Lin X, He Z, Su H, Li W, Ren X. Amino acid and microbial community dynamics during the fermentation of Hong qu glutinous rice wine. Food Microbiol, 2020, 90: 103467

[17]

Licitra G, Hernandez T, Van Soest P. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol, 1996, 57: 347-358

[18]

Liu JM, Solem C, Lu T, Jensen PR. Harnessing lactic acid bacteria in synthetic microbial consortia. Trends Biotechnol, 2022, 40: 8-11

[19]

Liu J, Wang S, Wang Z, Shen C, Liu D, Shen X, Weng L, He Y, Wang S, Wang J. Pretreatment of Luzhou distiller’s grains for feed protein production using crude enzymes produced by a synthetic microbial consortium. Bioresour Technol, 2023, 390: 129852

[20]

Ma Y, Ling T, Su X, Jiang B, Nian B, Chen L, Liu M, Zhang Z, Wang D, Mu Y. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem, 2021, 334: 127560

[21]

Mao H, Mao H, Wang J, Liu J, Yoon I. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J Anim Sci, 2013, 91: 3291-3298

[22]

MéndezHernández JE, RodríguezDurán LV, PáezLerma JB, SotoCruz NO. Strategies for supplying precursors to enhance the production of secondary metabolites in solid-state fermentation. Fermentation, 2023, 9: 804

[23]

Niu D, Zhang S, Chen X, Xu C, Tang Y, Li C, Yin D, Hu T, Ren J (2025) Differential effects of ammonium and nitrate on lignocellulose degradation and nitrogen metabolism of Irpex lacteus in wheat straw. Int J Biol Macromol 147691

[24]

Orosz E, Antal K, Gazdag Z, Szabó Z, Han K, Yu J, Pócsi I, Emri T. Transcriptome-based modeling reveals that oxidative stress induces modulation of the AtfA‐dependent signaling networks in Aspergillus Nidulans. Int J Genomics, 2017, 2017: 6923849

[25]

Raimbault M. General and Microbiological aspects of solid substrate fermentation. Electron J Biotechn, 1998, 1: 26-27

[26]

Ren F, Wu F, Jie Y, Wu X, Gao L (2025) Carbon-nitrogen metabolic coupling for optimized protein production of corn Stover polysaccharides: from molecular mechanisms to Buffalo rumen Microbiome. Int J Biol Macromol, 145901

[27]

Sakuragawa T, Wakai S, Zhang S, Kawaguchi H, Ogino C, Kondo A. Accelerated glucose metabolism in hyphae-dispersed Aspergillus oryzae is suitable for biological production. J Biosci Bioeng, 2021, 132: 140-147

[28]

Salgado-Bautista D, Volke-Sepúlveda T, Figueroa-Martínez F, Carrasco-Navarro U, Chagolla-López A, Favela-Torres E. Solid-state fermentation increases secretome complexity in Aspergillus Brasiliensis. Fungal Biol, 2020, 124: 723-734

[29]

Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. Biotechnol Biofuels, 2021, 14: 154

[30]

Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 2020, 6: 106

[31]

Shi H, Yang E, Li Y, Chen X, Zhang J. Effect of solid-state fermentation on nutritional quality of leaf flour of the drumstick tree (Moringa Oleifera Lam). Front Bioeng Biotech, 2021, 9: 626628

[32]

Soares Rodrigues CI, den Ridder M, Pabst M, Gombert AK, Wahl SA. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose. Sci Rep, 2023, 13: 2126

[33]

Sun W, Zhang Z, Li X, Lu X, Liu G, Qin Y, Zhao J, Qu Y. Production of single cell protein from brewer’s spent grain through enzymatic saccharification and fermentation enhanced by ammoniation pretreatment. Bioresour Technol, 2024, 394: 130242

[34]

Thongkratok R, Khempaka S, Molee W. Protein enrichment of cassava pulp using microorganisms fermentation techniques for use as an alternative animal feedstuff. J Anim Vet Adv, 2010, 9: 2859-2862

[35]

Tilley J. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci, 1963, 18: 104-111

[36]

Wang S, Long H, Hu X, Wang H, Wang Y, Guo J, Zheng X, Ye Y, Shao R, Yang Q. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose. Bioresour Technol, 2024, 394: 130285

[37]

Xiao Z, Zhang X, Gregg DJ, Saddler JN. Effects of sugar Inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotech, 2004, 115: 1115-1126

[38]

Ye Y, Cai Y, Wang F, He Y, Yang Y, Guo Z, Liu M, Ren H, Wang S, Liu D. Industrial microbial technologies for feed protein production from non-protein nitrogen. Microorganisms, 2025, 13: 742

[39]

You J, Zhang H, Zhu H, Xue Y, Cai Y, Zhang G. Microbial community, fermentation quality, and in vitro degradability of ensiling Caragana with lactic acid bacteria and rice Bran. Front Microbiol, 2022, 13: 804429

[40]

Zaramela LS, Moyne O, Kumar M, Zuniga C, Tibocha-Bonilla JD, Zengler K. The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Curr Opin Biotech, 2021, 67: 149-157

[41]

Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev, 2013, 113: 2343-2394

[42]

Zhang Y, Wang M, Usman S, Li F, Bai J, Zhang J, Guo X. Lignocellulose conversion of ensiled Caragana korshinskii Kom. Facilitated by Pediococcus acidilactici and cellulases. Microb Biotechnol, 2023, 16: 432-447

[43]

Zhao M, Liu D, Zhou J, Wei Z, Wang Y, Zhang X. Ammonium stress promotes the conversion to organic nitrogen and reduces nitrogen loss based on restructuring of bacterial communities during sludge composting. Bioresour Technol, 2022, 360: 127547

[44]

Zheng M, Li R, Wang Y, Cui X, Niu D, Yang F, Xu C. Ensiling with rumen fluid promoted Irpex lacteus colonization on the non-sterile naked oat straw for enhanced lignocellulose degradation and enzymatic hydrolysis. Biochem Eng J, 2022, 183: 108462

[45]

Zhou J, Wang J, Zhou Y, Liu K, Lu Y, Zhu L, Chen X. Microbial community structure and interactions between Aspergillus oryzae and bacteria in traditional solid-state fermentation of Jiangqu. Food Microbiol, 2023, 116: 104346

[46]

Zhu Y, Luo Y, Wang P, Zhao M, Li L, Hu X, Chen F. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem, 2016, 194: 643-649

[47]

Zou M, Guo X, Huang Y, Cao F, Su E, Wang J. Improvement of the quality of Ginkgo Biloba leaves fermented by Eurotium cristatum as high value-added feed. Processes, 2019, 7: 627

[48]

Zuo S, Niu D, Ning T, Zheng M, Jiang D, Xu C. Protein enrichment of sweet potato beverage residues mixed with peanut shells by Aspergillus oryzae and Bacillus subtilis using central composite design. Waste Biomass Valori, 2018, 9: 835-844

[49]

Zuo S, Niu D, Zheng M, Jiang D, Tian P, Li R, Xu C. Effect of Irpex lacteus, Pleurotus ostreatus and Pleurotus cystidiosus pretreatment of corn Stover on its improvement of the in vitro rumen fermentation. J Sci Food Agric, 2018, 98: 4287-4295

[50]

Zuo S, Wu D, Du Z, Xu C, Wu W. Effects of white-rot fungal pretreatment of corn straw return on greenhouse gas emissions from the North China plain soil. Sci Total Environ, 2022, 807: 150837

Funding

National Key Research and Development Program of China(2022YFD1300902)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/