Boosting the cellulolytic oxidative and hydrolytic enzyme systems in Myceliophthora thermophila for the efficient enzymatic saccharification of lignocellulosic biomass

Rui Bai , Kun Yang , Yaru Wang , Yuan Wang , Xiaolu Wang , Tao Tu , Jie Zhang , Xiaoyun Su , Huoqing Huang , Bin Yao , Huiying Luo , Xing Qin

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 126

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :126 DOI: 10.1186/s40643-025-00967-5
Research
research-article

Boosting the cellulolytic oxidative and hydrolytic enzyme systems in Myceliophthora thermophila for the efficient enzymatic saccharification of lignocellulosic biomass

Author information +
History +
PDF

Abstract

Abstract

The thermophilic fungus Myceliophthora thermophila serves as a vital platform for producing cellulolytic complex enzymes. However, their efficiency still requires enhancement to meet the cost-effective demands of lignocellulosic biomass conversion. Herein, secretome analysis revealed that the cellulolytic enzyme system of M. thermophila comprises the oxidative system consisting of lytic polysaccharide monooxygenases (LPMOs) and the hydrolytic system that includes endoglucanase, cellobiohydrolase, and β-glucosidase. Both in vitro supplementation and in vivo overexpression of MtLPMOs with C1 or C1/C4 oxidizing activity enhanced the enzymatic saccharification of Avicel using M. thermophila fermentation broth, resulting in a maximum increase of 485% in oxidized cello-oligosaccharides production. Furthermore, the simultaneous enhancement of LPMO and β-glucosidase expression in M. thermophila significantly improved cellulose depolymerization and lignocellulosic biomass degradation. Total production of native and oxidized cello-oligosaccharides from pretreated corncob residue increased from 5.55 to 0.27 mg/mL in the wild-type strain to 8.72 mg/mL and 0.61 mg/mL in the engineered strain. Taken together, these findings highlight the synergistic interaction between the oxidative and hydrolytic enzyme systems for efficient saccharification of lignocellulosic biomass, providing valuable insights for enhancing the performance of commercial cellulolytic enzyme products.

Keywords

Lytic polysaccharide monooxygenase / β-glucosidase / Myceliophthora thermophila / Enzymatic saccharification / Lignocellulosic biomass

Cite this article

Download citation ▾
Rui Bai, Kun Yang, Yaru Wang, Yuan Wang, Xiaolu Wang, Tao Tu, Jie Zhang, Xiaoyun Su, Huoqing Huang, Bin Yao, Huiying Luo, Xing Qin. Boosting the cellulolytic oxidative and hydrolytic enzyme systems in Myceliophthora thermophila for the efficient enzymatic saccharification of lignocellulosic biomass. Bioresources and Bioprocessing, 2025, 12(1): 126 DOI:10.1186/s40643-025-00967-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angeltveit CF, Várnai A, Eijsink VGH, Horn SJ. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. Biotechnol Biofuels Bioprod, 2024, 17(1 39

[2]

Anu-Kumar A, Singh D, Kumar V, Singh B. Production of cellulolytic enzymes by Myceliophthora thermophila and their applicability in saccharification of rice straw. Biomass Convers Biorefinery, 2022, 12(7): 2649-2662

[3]

Barbosa FC, Silvello MA, Goldbeck R. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett, 2020, 42(6): 875-884

[4]

Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan M-C, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, LaBoissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol, 2011, 29(10): 922-927

[5]

Breslmayr E, Laurent CVFP, Scheiblbrandner S, Jerkovic A, Heyes DJ, Oostenbrink C, Ludwig R, Hedison TM, Scrutton NS, Kracher D. Protein conformational change is essential for reductive activation of lytic polysaccharide monooxygenase by cellobiose dehydrogenase. ACS Catal, 2020, 10(9): 4842-4853

[6]

Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate. Microbiol Spectr, 2024, 12(10 e00441–24

[7]

da Rosa-Garzon NG, Laure HJ, Rosa JC, Cabral H. Valorization of agricultural residues using Myceliophthora thermophila as a platform for production of lignocellulolytic enzymes for cellulose saccharification. Biomass Bioenerg, 2022, 161 106452

[8]

Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-nn: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods, 2020, 17(1): 41-44

[9]

Deng W, Feng Y, Fu J, Guo H, Guo Y, Han B, Jiang Z, Kong L, Li C, Liu H, Nguyen PTT, Ren P, Wang F, Wang S, Wang Y, Wang Y, Wong SS, Yan K, Yan N, Yang X, Zhang Y, Zhang Z, Zeng X, Zhou H. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ, 2023, 8(1): 10-114

[10]

Du J, Liang J, Zhang X, Wang J, Li W, Song P, Feng X. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover. Bioresour Technol, 2022, 343 126113

[11]

Felice AKG, Schuster C, Kadek A, Filandr F, Laurent C, Scheiblbrandner S, Schwaiger L, Schachinger F, Kracher D, Sygmund C, Man P, Halada P, Oostenbrink C, Ludwig R. Chimeric cellobiose dehydrogenases reveal the function of cytochrome domain mobility for the electron transfer to lytic polysaccharide monooxygenase. ACS Catal, 2021, 11(2): 517-532

[12]

Frassatto PAC, Casciatori FP, Thoméo JC, Gomes E, Boscolo M, da Silva R. β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers Biorefin, 2021, 11(2): 503-513

[13]

Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. Mycocosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res, 2013, 42(D1): D699-D704

[14]

Guo X, An Y, Liu F, Lu F, Wang B. Lytic polysaccharide monooxygenase – a new driving force for lignocellulosic biomass degradation. Bioresour Technol, 2022, 362 127803

[15]

Hemsworth GR. Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Essays Biochem, 2023, 67(3): 585-595

[16]

Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a review. Biomass Bioenergy, 2020, 134 105481

[17]

Keller MB, Badino SF, Blossom BM, McBrayer B, Borch K, Westh P. Promoting and impeding effects of lytic polysaccharide monooxygenases on glycoside hydrolase activity. ACS Sustain Chem Eng, 2020, 8(37): 14117-14126

[18]

Keller MB, Badino SF, Røjel N, Sørensen TH, Kari J, McBrayer B, Borch K, Blossom BM, Westh P. A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. J Biol Chem, 2021

[19]

Li J, Wang Y, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Development of an efficient protein expression system in the thermophilic fungus Myceliophthora thermophila. Microb Cell Fact, 2023, 22(1): 236

[20]

Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol, 2022, 219: 68-83

[21]

Lorenci Woiciechowski A, Dalmas Neto CJ, de Souza P, Vandenberghe L, de Carvalho Neto DP, Novak Sydney AC, Letti LAJ, Karp SG, Zevallos Torres LA, Soccol CR. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Biores Technol, 2020, 304 122848

[22]

Mujtaba M, Fernandes Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, do Espírito Santo Pereira A, Mancini SD, Lipponen J, Vilaplana F. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod, 2023, 402 136815

[23]

Noguchi T, Saito H, Nishiyama R, Yoshida N, Matsubayashi T, Teshima Y, Yamada C, Hiramatsu S, Yamada K, Kagawa Y. Isolation of a cellulase hyperproducing mutant strain of Trichoderma reesei. Bioresour Technol Rep, 2021, 15 100733

[24]

Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol Biofuels, 2018, 11(158

[25]

Qin X, Zou J, Yang K, Li J, Wang X, Tu T, Wang Y, Yao B, Huang H, Luo H. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases. Bioresour Technol, 2022, 364 128027

[26]

Qin X, Yang K, Wang X, Tu T, Wang Y, Zhang J, Su X, Yao B, Huang H, Luo H. Insights into the H2O2-driven lytic polysaccharide monooxygenase activity on efficient cellulose degradation in the white rot fungus Irpex lacteus. J Agric Food Chem, 2023, 71(218104-8111

[27]

Qin X, Zou J, Yang K, Li J, Wang X, Tu T, Zhang J, Su X, Yao B, Huang H, Luo H. Discovering functional diversity of lytic polysaccharide monooxygenases from the thermophilic fungus Myceliophthora thermophila and their application in lignocellulosic biomass degradation. ACS Sustain Chem Eng, 2023, 11(29): 10929-10937

[28]

Rantasalo A, Landowski CP, Kuivanen J, Korppoo A, Reuter L, Koivistoinen O, Valkonen M, Penttilä M, Jäntti J, Mojzita D. A universal gene expression system for fungi. Nucleic Acids Res, 2018, 46(18): e111-e111

[29]

Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol, 2016, 36(1): 59-69

[30]

Sørlie M, Keller MB, Westh P. The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases. Essays Biochem, 2023, 67(3): 551-559

[31]

Sun P, Huang Z, Banerjee S, Kadowaki MAS, Veersma RJ, Magri S, Hilgers R, Muderspach SJ, Laurent CVFP, Ludwig R, Cannella D, Lo Leggio L, van Berkel WJH, Kabel MA. Aa16 oxidoreductases boost cellulose-active AA9 lytic polysaccharide monooxygenases from Myceliophthora thermophila. ACS Catal, 2023, 13(7): 4454-4467

[32]

Tokin R, Ipsen , Westh P, Johansen KS. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent. Biotechnol Lett, 2020, 42(10): 1975-1984

[33]

Tsegaye B, Balomajumder C, Roy P. Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. Environ Technol, 2019, 40(9): 1203-1211

[34]

Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. Sci Adv, 2022, 8(51): 5155

[35]

Usmani Z, Sharma M, Awasthi AK, Lukk T, Tuohy MG, Gong L, Nguyen-Tri P, Goddard AD, Bill RM, Nayak SC, Gupta VK. Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization. Renew Sustain Energy Rev, 2021, 148 111258

[36]

Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin, 2012, 6(4465-482

[37]

Zou G, Bao D, Wang Y, Zhou S, Xiao M, Yang Z, Wang Y, Zhou Z. Alleviating product inhibition of Trichoderma reesei cellulase complex with a product-activated mushroom endoglucanase. Bioresour Technol, 2021, 319 124119

Funding

the National Natural Science Foundation of China(32472944)

the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202304)

the Central Public-interest Scientific Institution Basal Research Fund(Y2025QC05)

the China Agriculture Research System of MOF and MARA(CARS-41)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/