Propanol production through microbial fermentation of biomass

Caiping Sun , Luxin Yang , Chuyun Zhao , Huan Li , Zhou Deng , Guangli Liu , Chunxu Wu

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 127

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :127 DOI: 10.1186/s40643-025-00966-6
Review
review-article

Propanol production through microbial fermentation of biomass

Author information +
History +
PDF

Abstract

As a key short-chain alcohol compound, propanol has a diverse range of applications in solvents, pharmaceutical intermediates, fuel additives, and other fields. With the increasing global demand for sustainable development and green chemistry, the production technology of biopropanol is gradually shifting from traditional petroleum-based chemical synthesis to biosynthesis based on microbial fermentation. This paper reviews the recent research progress in the field of biopropanol production, encompassing various aspects such as natural propanol-producing strains, genetically engineered strains, metabolic pathway design, fermentation process optimization, and downstream purification technologies. Despite the remarkable progress in biopropanol production technology, it still faces numerous challenges, including the low production efficiency of natural microorganisms, the strong inhibitory effect of the product, and poor substrate conversion rates. Future research can be directed toward optimizing fermentation conditions, integrating downstream separation technology, and developing highly active key enzyme components and artificial metabolic pathways to enhance the production efficiency of biopropanol and improve its feasibility for industrial applications.

Keywords

Biosynthesis / Fermentation / Metabolic engineering / Propanol

Cite this article

Download citation ▾
Caiping Sun, Luxin Yang, Chuyun Zhao, Huan Li, Zhou Deng, Guangli Liu, Chunxu Wu. Propanol production through microbial fermentation of biomass. Bioresources and Bioprocessing, 2025, 12(1): 127 DOI:10.1186/s40643-025-00966-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abrar I, Arora T, Khandelwal R. Bioalcohols as an alternative fuel for transportation: cradle to grave analysis. Fuel Process Technol, 2023, 242: 107646

[2]

Allen SHG, Kellermeyer RW, Stjernholm RL, Wood HG. Purification and properties of enzymes involved in the propionic acid fermentation. J Bacteriol, 1964, 87(1): 171-187

[3]

Ammar EM, Wang Z, Yang S-T. Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol, 2013, 97(104677-4690

[4]

An Y, Li W, Li Y, Huang S, Ma J, Shen C, Xu C. Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chem Eng Sci, 2015, 135: 166-178

[5]

Antonelli A, Castellari L, Zambonelli C, Carnacini A. Yeast influence on volatile composition of wines. J Agric Food Chem, 1999, 47(3): 1139-1144

[6]

Arslan K, Schoch T, Höfele F, Herrschaft S, Oberlies C, Bengelsdorf F, Veiga MC, Dürre P, Kennes CJBJ. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnol J, 2022, 17(5): 2100515

[7]

Atsumi S, Liao JC. Directed evolution of methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli. Appl Environ Microbiol, 2008, 74(247802-7808

[8]

Ávila M, Rochón E, Lareo C. Improvements in the formulation of sugarcane-sweet sorghum juices fermentation media for enhanced isopropanol and butanol production. Biomass Conversion and Biorefinery, 2023, 13(6): 4575-4585

[9]

Baichwal VR, Cunningham TS, Gatzek PR, Kohlhaw GB. Leucine biosynthesis in yeast. Curr Genet, 1983, 7(5): 369-377

[10]

Bankar SB, Jurgens G, Survase SA, Ojamo H, Granström T. Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol production with an integrated DNA-technology approach. Renew Energy, 2015, 83: 1076-1083

[11]

Barbirato F, Chedaille D, Bories A. Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol, 1997, 47(4): 441-446

[12]

Bermejo LL, Welker NE, Papoutsakis ET. Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol, 1998, 64(3): 1079-1085

[13]

Bowen TC, Noble RD, Falconer JL. Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci, 2004, 245(1): 1-33

[14]

Celińska E, Borkowska M, Białas W, Kubiak M, Korpys P, Archacka M, Ledesma Amaro R, Nicaud J-M. Genetic engineering of Ehrlich pathway modulates production of higher alcohols in engineered Yarrowia lipolytica. FEMS Yeast Res, 2018

[15]

Choi YJ, Lee J, Jang YS, Lee SY. Metabolic engineering of microorganisms for the production of higher alcohols. Mbio, 2014

[16]

Chou TJ, Tanioka A, Tseng HC. Salting effect on the liquid−liquid equilibria for the partially miscible systems of n-propanol−water and i-propanol−water. Ind Eng Chem Res, 1998, 37(5): 2039-2044

[17]

Collas F, Kuit W, Clément B, Marchal R, López-Contreras AM, Monot F. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express, 2012, 2(1): 45

[18]

Cui Y, He J, Yang KL, Zhou K. Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. J Ind Microbiol Biotechnol, 2020, 47(6–7543-550

[19]

Dai Y, Qu Y, Wang S, Wang J. Measurement, correlation, and prediction of vapor pressure for binary and ternary systems containing an alkylsulfate-based ionic liquid. Fluid Phase Equilib, 2015, 397: 58-67

[20]

Dalal J, Das M, Joy S, Yama M, Rawat J. Efficient isopropanol-butanol (IB) fermentation of rice straw hydrolysate by a newly isolated Clostridium beijerinckii strain C-01. Biomass Bioenergy, 2019, 127: 105292

[21]

Daniell J, Köpke M, Simpson SDJE (2012) Commer Biomass Syngas Ferment 5(12):5372–5417

[22]

De Guido G, Monticelli C, Spatolisano E, Pellegrini LA. Separation of the mixture 2-propanol + water by heterogeneous azeotropic distillation with isooctane as an entrainer. Energies, 2021, 14(17): 5471

[23]

de Vrije T, Budde M, van der Wal H, Claassen PAM, López-Contreras AM. “In situ” removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping. Bioresour Technol, 2013, 137: 153-159

[24]

Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol, 2010, 76(155067-5078

[25]

Díaz-Montaño DM, Délia ML, Estarrón Espinosa M, Strehaiano P. Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice. Enzyme Microb Technol, 2008, 42(7): 608-616

[26]

Dishisha T, Alvarez MT, Hatti-Kaul R. Batch-and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol, 2012, 118: 553-562

[27]

Djameh C, Ellis WO, Oduro I, Saalia FK, Haslbeck K, Komlaga GA. West African sorghum beer fermented with Lactobacillus delbrueckii and Saccharomyces cerevisiae: fermentation by-products. J Instit Brew, 2019, 125(3): 326-332

[28]

Do Thi HT, Toth AJ. Environment-oriented assessment of hybrid methods for separation of N-Propanol–Water Mixtures: combination of distillation and hydrophilic pervaporation processes. Membranes, 2025, 15(2): 48

[29]

dos Santos F, Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. Bioresour Technol, 2022, 344: 126313

[30]

dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. Bioresour Technol, 2019, 287: 121425

[31]

Dubois JL, Postole G, Silvester L, Auroux AJC (2022) Catalytic dehydration of isopropanol to propylene. 12(10):1097

[32]

Dusséaux S, Croux C, Soucaille P, Meynial Salles I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng, 2013, 18: 1-8

[33]

Ehsaan M, Yoo M, Kuit W, Foulquier C, Soucaille P, Minton NP. Chromosomal integration of the pSOL1 megaplasmid of Clostridium acetobutylicum for continuous and stable advanced biofuels production. Nat Microbiol, 2024, 9(71655-1660

[34]

El-Dalatony MM, Saha S, Govindwar SP, Abou-Shanab RAI, Jeon BH. Biological conversion of amino acids to higher alcohols. Trends Biotechnol, 2019, 37(8): 855-869

[35]

Ezeji TC, Qureshi N, Blaschek HJAm. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol, 2004, 63: 653-658

[36]

George HA, Johnson JL, Moore WEC, Holdeman LV, Chen JS. Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol, 1983, 45(3): 1160-1163

[37]

Gérando HM, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Ferreira NL, López-Contreras AM. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol, 2016, 100(12): 5427-5436

[38]

Gonzalez-Garcia RA, McCubbin T, Turner MS, Nielsen LK, Marcellin E. Engineering Escherichia coli for propionic acid production through the Wood-Werkman cycle. Biotechnol Bioeng, 2020, 117(1): 167-183

[39]

Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol, 2014, 98(9): 4277-4290

[40]

Hanai T, Atsumi S, Liao JC. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol, 2007, 73(24): 7814-7818

[41]

Harvianto GR, Ahmad F, Nhien LC, Lee M. Vapor permeation–distillation hybrid processes for cost-effective isopropanol dehydration: modeling, simulation and optimization. J Membr Sci, 2016, 497: 108-119

[42]

Hazelwood LA, Daran JM, Van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbio, 2008, 74(8): 2259-2266

[43]

Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R. Tomato waste from processing industries as a feedstock for biofuel production. BioEnergy Res, 2019, 12(4): 1000-1011

[44]

Himmi EH, Bories A, Boussaid A, Hassani L. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp.shermanii. Appl Microbiol Biotechnol, 2000, 53(4): 435-440

[45]

Hirokawa Y, Suzuki I, Hanai T. Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng, 2015, 119(5): 585-590

[46]

Hirokawa Y, Dempo Y, Fukusaki E, Hanai T. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. J Biosci Bioeng, 2017, 123(1): 39-45

[47]

Hocq R, Sauer M. An artificial coculture fermentation system for industrial propanol production. FEMS Microbes, 2022

[48]

Holt RA, Stephens GM, Morris JG (1984) Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH. 48(6):1166–1170. https://doi.org/10.1128/aem.48.6.1166-1170.1984

[49]

Howell DM, Xu H, White RH. (R)-citramalate synthase in methanogenic Archaea. J Bacteriol, 1999, 181(1): 331-333

[50]

Huang Z, Ru XF, Zhu YT, Guo Yh, Teng Lj. Poly(vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of isopropanol/water solution through response surface methodology. Chem Eng Res des, 2019, 144: 19-34

[51]

IEA (2025). Renewables 2025: Analysis and forecasts to 2030. https://www.iea.org/reports/renewables-2025

[52]

Inokuma K, Liao JC, Okamoto M, Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng, 2010, 110(6): 696-701

[53]

Jain R, Yan Y. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact, 2011, 10(1): 97

[54]

Jain R, Sun X, Yuan Q, Yan Y. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth Biol, 2015, 4(6746-756

[55]

Janakey Devi VKP, Sai PST, Balakrishnan AR. Experimental studies and thermodynamic analysis of isobaric vapor-liquid-liquid equilibria of 2-propanol + water system using n-propyl acetate and isopropyl acetate as entrainers. Fluid Phase Equilib, 2017, 454: 22-34

[56]

Janakey Devi VKP, Sai PST, Balakrishnan AR. Heterogeneous azeotropic distillation for the separation of n-propanol + water mixture using n-propyl acetate as entrainer. Fluid Phase Equilib, 2017, 447: 1-11

[57]

Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung DYJ. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Prog, 2013, 29(4): 1083-1088

[58]

Jojima T, Inui M, Yukawa H. Production of isopropanol by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol, 2008, 77(6): 1219-1224

[59]

Lee JoungMin, LJ, Jang YuSin JY, Choi SungJun CS, Im JungAe IJ, Song HyoHak SH, Cho JungHee CJ, Seung DoYoung SD, Papoutsakis ET, Bennett GN and Lee SangYup, LS, (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. 78(5):1416–1423. https://doi.org/10.1128/AEM.06382-11

[60]

Jun Choi Y, Hwan Park J, Yong Kim T, Yup Lee S. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng, 2012, 14(5): 477-486

[61]

Kato J, Matsuo T, Takemura K, Kato S, Fujii T, Wada K, Nakamichi Y, Watanabe M, Aoi Y, Morita T. Isopropanol production via the thermophilic bioconversion of sugars and syngas using metabolically engineered Moorella thermoacetica. Biotechnol Biofuels Bioprod, 2024, 17(1): 13

[62]

Keenan TW, Lindsay RC. Dehydrogenase activity of Lactobacillus species 1, 2. J Dairy Sci, 1967, 50(101585-1588

[63]

Ko YJ, Cha J, Jeong W-Y, Lee M-E, Cho B-H, Nisha B, Jeong HJ, Park SE, Han SO. Bio-isopropanol production in Corynebacterium glutamicum: metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresour Technol, 2022, 354: 127171

[64]

Ko YJ, Cha J, Jeong WY, Lee ME, Cho BH, Nisha B, Jeong HJ, Park SE, Han SO. Bio-isopropanol production in Corynebacterium glutamicum: metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresour Technol, 2022, 354: 127171

[65]

Kong ZY, Sánchez-Ramírez E, Yang A, Shen W, Segovia-Hernández JG, Sunarso J. Process intensification from conventional to advanced distillations: past, present, and future. Chem Eng Res des, 2022, 188: 378-392

[66]

Kristensen NB, Sloth KH, Højberg O, Spliid NH, Jensen C, Thøgersen R. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J Dairy Sci, 2010, 93(8): 3764-3774

[67]

Kuhz H, Kuenz A, Prüße U, Willke T, Vorlop K-DJB (2017) Products components: alcohols, 339–372

[68]

Kumar Sarangi P, Subudhi S, Bhatia L, Saha K, Mudgil D, Prasad Shadangi K, Srivastava RK, Pattnaik B, Arya RK. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ Sci Pollut Res Int, 2023, 30(4): 8526-8539

[69]

Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng, 2013, 20: 101-108

[70]

Kutscha R, Uhlir D, Pflügl S. Improving sustainable isopropanol production in engineered Escherichia coli W via oxygen limitation. Micro Cell Fact, 2025, 24(1): 1-14

[71]

Kwon Y, Chaudhari S, Kim C, Son D, Park J, Moon M, Shon M, Park Y, Nam SJRa. Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture. RSC Adv, 2018, 8(37): 20669-20678

[72]

Le Thi Quynh H, Lee EY. Biological production of 2-propanol from propane using a metabolically engineered type I methanotrophic bacterium. Bioresour Technol, 2022, 362: 127835

[73]

Le TJb (2021) Re-introduction of endogenous pathways for propionyl-CoA, 1-propanol and propionate formation in Escherichia coli, 2021–2011

[74]

Lee J, Jang Y-S, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol, 2012, 78(5): 1416-1423

[75]

Li W, Wang L, Zhang Y, Feng H, Guo H, Zhang TJJoCT. Design and optimization of extractive distillation of benzene–n-propanol with ionic liquid as entrainer. Biotechnology, 2022, 97(1299-311

[76]

Lin GS, Chen YR, Chang TH, Huang TC, Zhuang GL, Huang WZ, Liu YC, Matsuyama H, Wu KCW, Tung KL. A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration. J Membr Sci, 2021, 621: 118935

[77]

Lin LJ, Saini M, Chiang CJ, Chao YP. Biocatalytic conversion of short-chain fatty acids to corresponding alcohols in Escherichia coli. Processes, 2021, 9(6): 973

[78]

Liu Y, Zhang YG, Zhang RB, Zhang F, Zhu J. Glycerol/Glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici. Curr Microbiol, 2011, 62(1152-158

[79]

Liu Z, Xu D, Ma Y, Zhu J, Gao J, Shi P, Ma X, Wang Y. Liquid-liquid equilibrium determination and thermodynamics modeling for extraction of isopropanol from its aqueous solution. Fluid Phase Equilib, 2018, 458: 40-46

[80]

Liu L, Yang J, Yang Y, Luo L, Wang R, Zhang Y, Yuan H. Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production. Bioresour Technol, 2019, 292: 121965

[81]

Liu S, Xiao H, Zhang F, Lu Z, Zhang Y, Deng A, Li Z, Yang C, Wen T. A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. Biotechnol Biofuels, 2019, 12(1180

[82]

Lone S, Ahmad SA, Kumar VJJCEPsT (2015) Modeling and simulation of a hybrid process (Pervaporation+ Distillation) using MATLAB. 6:234

[83]

Lu J, Yang F, Yang J, Chen L, Liu Y, Wang H, Wang LJCb (2019) Source tracing of 1-propanol-producing microorganisms during Baijiu fermentation. 38(7):151–155

[84]

Marc J, Grousseau E, Lombard E, Sinskey AJ, Gorret N, Guillouet SE. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng, 2017, 42: 74-84

[85]

Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2015) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. In: S Syngellakis (ed) Biomass to Biofuels

[86]

Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J Biosci Bioeng, 2016, 122(4421-426

[87]

Moon YH, Han KJ, Kim D, Day DF. Enhanced production of butanol and isopropanol from sugarcane molasses using Clostridium beijerinckii optinoii. Biotechnol Bioprocess Eng, 2015, 20(5): 871-877

[88]

Moriyama N, Nagasawa H, Kanezashi M, Tsuru T. Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: effect of membrane pore sizes and molecular sizes. Sep Purif Technol, 2018, 207: 108-115

[89]

Mujiburohman M, Sediawan WB, Sulistyo H. A preliminary study: Distillation of isopropanol–water mixture using fixed adsorptive distillation method. Sep Purif Technol, 2006, 48(1): 85-92

[90]

Nanda S, Rana R, Vo D-VN, Sarangi PK, Nguyen TD, Dalai AK, Kozinski JAJBoARTGF, Chemicals P (2020) A spotlight on butanol and propanol as next-generation synthetic fuels.105–126

[91]

Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production. Metab Eng Commun, 2018, 6: 1-12

[92]

Nishimura Y, Matsui T, Ishii J, Kondo A. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Microb Cell Fact, 2018, 17(1 38

[93]

Ohtake T, Kawase N, Pontrelli S, Nitta K, Lavina WA, Shen CR, Putri SP, Liao JC, Fukusaki E. Metabolomics-driven identification of the rate-limiting steps in 1-propanol production. Front Microbiol, 2022

[94]

Olegário R, da Silva DA, Bosmuler Zuge LC, de Paula SA. Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation. Sep Purif Technol, 2020, 247 116852

[95]

O'Quinn HC, Vailionis J, Tanwee TNN, Holandez-Lopez KS, Bing RG, Poole FL, Zhang Y, Kelly RM, Adams MWW. Engineering the hyperthermophilic archaeon Pyrococcus furiosus for 1-propanol production. Appl Environ Microbiol, 2025, 91(5): e00471-e1425

[96]

Peng W, Li H, Zhang Q, Chen Y. (Liquid + liquid) extraction of 2-propanol from aqueous solutions using extracting agents ethyl butyrate and n-pentyl acetate at three temperatures. J Chem Thermodyn, 2020, 144 105975

[97]

Pla-Franco J, Lladosa E, Loras S, Montón JB. Azeotropic distillation for 1-propanol dehydration with diisopropyl ether as entrainer: equilibrium data and process simulation. Sep Purif Technol, 2019, 212: 692-698

[98]

Procentese A, Raganati F, Navarini L, Olivieri G, Russo ME, Marzoccchella A. Coffee silverskin as a renewable resource to produce butanol and isopropanol. Chem Eng Trans, 2018, 64: 139-144

[99]

Pyrgakis KA, de Vrije T, Budde MAW, Kyriakou K, López-Contreras AM, Kokossis AC. A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods. Biochem Eng J, 2016, 116: 176-194

[100]

Ramsey S, Williams B, Jarrell P, Hubbs TJERSUDfAhweugwob-p (2023) Global demand for fuel ethanol through 2030. 5239

[101]

Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J, 2014, 8(6): 1323-1335

[102]

Rochón E, Cebreiros F, Ferrari MD, Lareo C. Isopropanol-butanol production from sugarcane and sugarcane-sweet sorghum juices by Clostridium beijerinckii DSM 6423. Biomass Bioenergy, 2019, 128 105331

[103]

Schubert T. Production routes of advanced renewable C1 to C4 alcohols as biofuel components – a review. Biofuels Bioprod Biorefin, 2020, 14(4): 845-878

[104]

Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng, 2008, 10(6): 312-320

[105]

Shen CR, Liao JC. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab Eng, 2013, 17: 12-22

[106]

Shi X, Park HM, Kim M, Lee ME, Jeong WY, Chang J, Cho BH, Han SO. Isopropanol biosynthesis from crude glycerol using fatty acid precursors via engineered oleaginous yeast Yarrowia lipolytica. Microb Cell Fact, 2022, 21(1): 168

[107]

Sholl DS, Lively RP. Seven chemical separations to change the world. Nature, 2016, 532(7600435-437

[108]

Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnol Biofuels, 2015, 8(1): 91

[109]

Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng, 2015, 30: 7-15

[110]

Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng, 2012, 114(180-85

[111]

Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng, 2014, 23: 175-184

[112]

Sommer S, Melin T. Design and optimization of hybrid separation processes for the dehydration of 2-propanol and other organics. Ind Eng Chem Res, 2004, 43(17): 5248-5259

[113]

Srirangan K, Akawi L, Liu X, Westbrook A, Blondeel EJM, Aucoin MG, Moo-Young M, Chou CP. Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli. Biotechnol Biofuels, 2013, 6(1): 139

[114]

Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, Chou CP. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl Microbiol Biotechnol, 2014, 98(229499-9515

[115]

Suwannakham S, Huang Y, Yang STJB. Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng, 2006, 94(2): 383-395

[116]

Tamakawa H, Mita T, Yokoyama A, Ikushima S, Yoshida S. Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol, 2013, 97(14): 6231-6239

[117]

Tholozan JL, Touzel JP, Samain E, Grivet JP, Prensier G, Albagnac G. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol, 1992, 157(3): 249-257

[118]

Tian Y, Kong XY, Fang F (2020) Microbial n-propanol synthesis during Luzhou-flavor liquor fermentation.

[119]

Toth AJ. N-propanol dehydration with distillation and pervaporation: experiments and modelling. Membranes, 2022, 12(8 750

[120]

Tran K-NT, Jeong J, Lee J, Hong SH. Engineering of Escherichia coli intracellular metabolism by introduction of protein scaffold for the efficient production of 1-propanol. Biotechnol Bioprocess Eng, 2025, 30(4): 727-732

[121]

Vane LM. Review of pervaporation and vapor permeation process factors affecting the removal of water from industrial solvents. J Chem Technol Biotechnol, 2020, 95(3): 495-512

[122]

Vane LM (2019) Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. 94(2):343-365

[123]

Vieira CFdS, Codogno MC, Maugeri Filho F, Maciel Filho R, Mariano AP. Sugarcane bagasse hydrolysates as feedstock to produce the isopropanol-butanol-ethanol fuel mixture: effect of lactic acid derived from microbial contamination on Clostridium beijerinckii DSM 6423. Bioresour Technol, 2021, 319 124140

[124]

Walther T, François JM. Microbial production of propanol. Biotechnol Adv, 2016, 34(5): 984-996

[125]

Wang X, Xie L, Tian P, Tian G. Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N-propanol. Chem Eng Process, 2016, 110: 172-187

[126]

Wang C, Xin F, Kong X, Zhao J, Dong W, Zhang W, Ma J, Wu H, Jiang M. Enhanced isopropanol–butanol–ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. Biotechnol Biofuels, 2018, 11(1): 12

[127]

Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J. Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chem Eng Sci, 2018, 181: 237-250

[128]

Wang XH, Li MG, Zhang YP, Hong J, Li WK, Ding X, Li YG. Research on the integration process of energy saving distillation-membrane separation based on genetic programming to achieve clean production. Chem Eng Process Process Intensif, 2020, 151: 107885

[129]

Wang S, Dai Y, Ma Z, Qi H, Chen Z, Shen Y, Yang J, Cui P, Wang Y, Zhu ZJ. Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis. J Clean Prod, 2021, 294: 126297

[130]

Wang YP, Sun Zg, Wei XQ, Guo XW, Xiao DG. Identification of core regulatory genes and metabolic pathways for the n-propanol synthesis in Saccharomyces cerevisiae. J Agric Food Chem, 2021, 69(51637-1646

[131]

Wang SN, Huang Z, Wang JT, Ru XF, Teng LJ. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol. Sep Purif Technol, 2023, 313: 123487

[132]

Wang C, Bin Z, Wang L, Zhu G, Tang S, Chen Y, Xiao D, Guo X. Metagenomic and metabolomic profiling analyses to unravel the formation mechanism of n-propanol during the first and second round of Jiangxiangxing Baijiu fermentation. Food Res Int, 2025, 200 115459

[133]

Wang JT, Huang Z, Zhu YT, Wang SN (2023a) Pervaporative poly(vinyl alcohol)/H-β zeolite mixed matrix membranes for dewatering C<sub>2</sub>-C<sub>3</sub>alcohols. J Appl Polym Sci 140(39). https://doi.org/10.1002/app.54454

[134]

Wang JT, Huang Z, Zhu YT, Wang SN (2023b) Poly(vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of ethanol and n-propanol. Turk J Chem. https://doi.org/10.55730/1300-0527.3622

[135]

Westfall HN, Charon NW, Peterson DE. Multiple pathways for isoleucine biosynthesis in the spirochete Leptospira. J Bacteriol, 1983, 154(2846-853

[136]

Wood HG. Estabrook RW, Srere P. Metabolic cycles in the fermentation by propionic acid bacteria. Current topics in cellular regulation, 1981Academic Press

[137]

Wu Q, Kong Y, Xu Y. Flavor profile of Chinese liquor is altered by interactions of intrinsic and extrinsic microbes. Appl Environ Microbiol, 2016, 82(2422-430

[138]

Wu Y, Meng D, Yao D, Liu X, Xu Y, Zhu Z, Wang Y, Gao J. Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation-pervaporation processes for dehydration of n-propanol. ACS Sustain Chem Eng, 2020, 8(11): 4561-4571

[139]

Wu Y, Meng D, Yao D, Liu X, Xu Y, Zhu Z, Wang Y, Gao JJASC, Engineering (2020b) Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation–pervaporation processes for dehydration of n-propanol. 8(11):4561–4571

[140]

Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M. Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels, 2017, 10(1118

[141]

Xue F, Sun C, Hu Q, Du X, Yang L, Zheng F, Wang Y. A new clean and energy-saving process design of extractive distillation for ethyl propionate/n-propanol/H2O heterogeneous azeotrope system. Sep Purif Technol, 2025, 363: 132059

[142]

Yang G, Xie Z, Doherty CM, Cran M, Ng D, Gray S. Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application. J Membr Sci, 2020, 603: 118005

[143]

Yang H, Zhang C, Lai N, Huang B, Fei P, Ding D, Hu P, Gu Y, Wu H. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. Bioresour Technol, 2020, 296: 122337

[144]

Yao X, Zhang Q, Fan Y, Xu X, Liu Z. Butanol–isopropanol fermentation with oxygen-tolerant Clostridium beijerinckii XH29. AMB Express, 2022, 12(157

[145]

Yoo SM, Jung SW, Yeom J, Lee SY, Na D. Tunable gene expression system independent of downstream coding sequence. ACS Synth Biol, 2020, 9(112998-3007

[146]

Yu A, Ye Q, Li J, Li X, Wang Y, Rui Q. Improving the economy and energy efficiency of separating n-propanol/water/tetrahydrofuran via triple-column pressure-swing distillation and azeotropic combining pressure-swing distillation. Sep Purif Technol, 2023, 309: 123023

[147]

Yu A, Ye Q, Li J, Wang Y, Rui Q. Energy-saving improvement of heat integration and heat pump for separating multi-azeotropes mixture via novel pressure swing distillation. Chem Eng Sci, 2023, 282: 119239

[148]

Zhang S, Qu C, Huang X, Suo Y, Liao Z, Wang J. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. J Ind Microbiol Biotechnol, 2016, 43(7915-925

[149]

Zhang C, Li T, He J. Characterization and genome analysis of a butanol-isopropanol-producing Clostridium beijerinckii strain BGS1 06 Biological Sciences 0605 microbiology 06 biological sciences 0604 Genetics. Biotechnol Biofuels, 2018

[150]

Zhang E, Gao R, Zhu K, Liu P, Liao W, Yang T, Liang X, Yang M, Ming Y, Miao L. Isolation and characterization of Lentilactobacillus diolivorans: a high n-propanol-producing microorganism from Baijiu brewing. Front Microbio, 2025

[151]

Zhou J, Lu X, Tian B, Wang C, Shi H, Luo C, Zhu X, Yuan X, Li X. Knockout of acetoacetate degradation pathway gene atoDA enhances the toxicity tolerance of Escherichia coli to isopropanol and acetone. 3 Biotech, 2019, 9(9343

[152]

Zhou J, Wang J, Yao M, He J, Yang Y, Li X, Tan Z, Shi H, Zhu X, Tian B. An acetate-independent pathway for isopropanol production via HMG-CoA in Escherichia coli. J Biotechnol, 2022, 359: 29-34

[153]

Zhou F, Yu J, Wu C, Fu J, Liu J, Duan XJ. The application prospect and challenge of the alternative methanol fuel in the internal combustion engine. Sci Total Environ, 2024, 913: 169708

[154]

Zironi R, Romano P, Suzzi G, Battistutta F, Comi G. Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae. Biotechnol Lett, 1993, 15(3235-238

Funding

Shenzhen Science and Technology Innovation Program(WDZC20231129120526001)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/