Converting Escherichia coli isochorismatase YecD into γ-lactamase

Xiaoyan Guo , Yijie Tang , Xutao Zhao , Sheng Wu , Jianjun Wang

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 118

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :118 DOI: 10.1186/s40643-025-00960-y
Research
research-article

Converting Escherichia coli isochorismatase YecD into γ-lactamase

Author information +
History +
PDF

Abstract

Five Escherichia coli proteins in the isochorismatase superfamily (EntB, RutB, Nic, YcaC, and YecD) were cloned and expressed. Among them, only RutB exhibited ( +) γ-lactamase activity. The primary structures of these five proteins were compared to those of a ( +) γ-lactamase (Mhpg) from Microbacterium hydrocarbonoxydans. Subsequently, the active site constellations (ASCs) of the proteins were superimposed. By imitating the ASCs of Mhpg and RutB, a single mutation converted YecD into an active ( +) γ-lactamase (YecD-G145C). A mutant with three mutations (YecD-G145C-W115E-V67I) engineered through combinatorial saturation mutagenesis was created. The catalytic efficiency (kcat/Km) of this mutant was 31-fold higher than that of YecD-G145C. Furthermore, the specific production rate (SPR) of the triple mutant (106 ± 4 mg/h·g dry cell weight, DCW) exceeded those of both RutB (89 ± 3 mg/h·g DCW) and Mhpg (46 ± 1 mg/h·g DCW), underscoring its superior catalytic robustness. The discovery of RutB and the latent ( +) γ-lactamase activity of YecD suggests that several members of the isochorismatase superfamily remain to be discovered, and members of this family could be used to identify novel ( +) γ-lactamases. Some of the members, such as YecD, could be engineered into robust catalysts.

Keywords

Active site constellation / ( +) γ-lactamase / Isochorismatase / Promiscuity

Cite this article

Download citation ▾
Xiaoyan Guo, Yijie Tang, Xutao Zhao, Sheng Wu, Jianjun Wang. Converting Escherichia coli isochorismatase YecD into γ-lactamase. Bioresources and Bioprocessing, 2025, 12(1): 118 DOI:10.1186/s40643-025-00960-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215(3): 403-410.

[2]

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res, 2000, 28(1): 235-242.

[3]

Caruthers J, Zucker F, Worthey E, Myler PJ, Buckner F, Van Voorhuis W, Mehlin C, Boni E, Feist T, Luft J, Gulde S, Lauricella A, Kaluzhniy O, Anderson L, Le Trong I, Holmes MA, Earnest T, Soltis M, Hodgson KO, Hol WGJ, Merritt EA. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Sci Publ Protein Soc, 2005, 14(11): 2887-2894.

[4]

Chang CE, Chen W, Gilson MK. Ligand configurational entropy and protein binding. Proc Natl Acad Sci U S A, 2007, 104(5): 1534-1539.

[5]

DeLano W (2002) The PyMOL molecular graphics system. http://www.pymol.org.

[6]

Gao X, Liu Z, Cui W, Zhou L, Tian Y, Zhou Z. Enhanced thermal stability and hydrolytic ability of Bacillus subtilis aminopeptidase by removing the thermal sensitive domain in the non-catalytic region. PLoS ONE, 2014, 9(3. e92357

[7]

Gao SH, Zhou Y, Zhang WW, Wang WH, Yu Y, Mu YJ, Wang H, Gong XQ, Zheng GJ, Feng Y. Structural insights into the gamma-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans. Sci Rep, 2017, 7(1): 44542.

[8]

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov, 2015, 10(5): 449-461.

[9]

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6(5): 343-345.

[10]

Glasner ME, Gerlt JA, Babbitt PC. Evolution of enzyme superfamilies. Curr Opin Chem Biol, 2006, 10(5): 492-497.

[11]

Goral AM, Tkaczuk KL, Chruszcz M, Kagan O, Savchenko A, Minor W. Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica. J Struct Funct Genomics, 2012, 13(1): 27-36.

[12]

Guo X, Chang L, Jin H, Zhu J, Tao Y, Wu S, Wang J. Converting the E. coli Isochorismatase Nicotinamidase into γ-Lactamase. Microbiol Spectr, 2022, 10(1): e0098521.

[13]

Hogrefe HH, Cline J, Youngblood GL, Allen RM. Creating randomized amino acid libraries with the quikchange multi site-directed mutagenesis kit. Biotechniques, 2002, 33(5): 1158-1165.

[14]

Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem, 2007, 28(6): 1145-1152.

[15]

Kettle AJ, Carere J, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM. A gamma-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genet Biol, 2015, 83: 1-9.

[16]

Kim KS, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE. The rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol, 2010, 192(16): 4089-4102.

[17]

King CH, Meckler H, Herr RJ, Trova MP, Glick SD, Maisonneuve IM. Synthesis of enantiomerically pure (+)- and (-)-18-methoxycoronaridine hydrochloride and their preliminary assessment as anti-addictive agents. Bioorg Med Chem Lett, 2000, 10(5): 473-476.

[18]

Kumari R, Kumar R, Lynn A. G_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model, 2014, 54(7): 1951-1962.

[19]

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680-685.

[20]

Line K, Isupov MN, Littlechild JA. The crystal structure of a (−) γ-lactamase from an Aureobacterium species reveals a tetrahedral intermediate in the active site. J Mol Biol, 2004, 338(3): 519-532.

[21]

Mizuno R, Fukamizo T, Sugiyama S, Nishizawa Y, Kezuka Y, Nonaka T, Suzuki K, Watanabe T. Role of the loop structure of the catalytic domain in rice class I chitinase. J Biochem, 2008, 143(4): 487-495.

[22]

Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995, 247(4): 536-540.

[23]

Orengo CA, Thornton JM. Protein families and their evolution - a structural perspective. Annu Rev Biochem, 2005, 74: 867-900.

[24]

Pandya C, Farelli JD, Dunaway-Mariano D, Allen KN. Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem, 2014, 289(44): 30229-30236.

[25]

Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol des, 2010, 24(5): 417-422.

[26]

Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: chemical profile of a versatile synthetic building block and its impact on the development of therapeutics. Chem Rev, 2012, 112(8): 4642-4686.

[27]

Süel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol, 2003, 10(1): 59-69.

[28]

Sun Y, Zhao HT, Wang JJ, Zhu JG, Wu S. Identification and regulation of the catalytic promiscuity of (-)-gamma-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol, 2015, 99(18): 7559-7568.

[29]

Tanaka K, Kato M, Toda F. Optical resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one by inclusion complexation with brucine. Heterocycles, 2001, 54(1): 405-410.

[30]

Taylor SJC, Mccague R, Wisdom R, Lee C, Dickson K, Ruecroft G, Obrien F, Littlechild J, Bevan J, Roberts SM, Evans CT. Development of the biocatalytic resolution of 2-Azabicyclo[2.2.1]Hept-5-En-3-One as an entry to single-enantiomer carbocyclic nucleosides. Tetrahedron-Asymmetry, 1993, 4(6): 1117-1128.

[31]

Todd AE, Orengo CA, Thornton JM. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol, 2001, 307(4): 1113-1143.

[32]

Toogood HS, Brown RC, Line K, Keene PA, Taylor SJC, McCague R, Littlechild JA. The use of a thermostable signature amidase in the resolution of the bicyclic synthon (rac)-gamma-lactam. Tetrahedron, 2004, 60(3): 711-716.

[33]

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem, 2005, 26(16): 1701-1718.

[34]

Wagner JR, Sørensen J, Hensley N, Wong C, Zhu C, Perison T, Amaro RE. POVME 3.0: software for mapping binding pocket flexibility. J Chem Theory Comput, 2017, 13(9): 4584-4592.

[35]

Wang J, Zheng G, Wu S. Advances in lactamases from microbes–a review. Wei Sheng Wu Xue Bao, 2010, 50(8): 988-994

[36]

Wang J, Zhu J, Wu S. Immobilization on macroporous resin makes E. coli RutB a robust catalyst for production of (-) Vince lactam. Appl Microbiol Biotechnol, 2015, 99(11): 4691-4700.

[37]

Wang J, Zhu Y, Zhao G, Zhu J, Wu S. Characterization of a recombinant (+)-γ-lactamase from Microbacterium hydrocarbonoxydans which provides evidence that two enantiocomplementary γ-lactamases are in the strain. Appl Microbiol Biotechnol, 2015, 99(7): 3069-3080.

[38]

Zhu S, Gong C, Song D, Gao S, Zheng G. Discovery of a novel (+)-gamma-lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining. Appl Environ Microbiol, 2012, 78(20): 7492-7495.

Funding

Beijing Municipal Commission of Education(KM202110017009)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/