Traditional processing unlocks anti-atherogenic potential of perilla fruit via PPAR-γ activation by luteolin

Yiqi Yan , Tian Xie , Ran An , Guangzhe Yao , Ming Huang , Ke Xiong

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 124

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :124 DOI: 10.1186/s40643-025-00957-7
Research
research-article

Traditional processing unlocks anti-atherogenic potential of perilla fruit via PPAR-γ activation by luteolin

Author information +
History +
PDF

Abstract

The accumulation of foam cells, lipid-laden macrophages in atherosclerotic plaques, is a hallmark of cardiovascular disease progression. These cells contribute to chronic inflammation and plaque instability, underscoring the need for novel therapeutic strategies. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a nuclear receptor pivotal to lipid metabolism and inflammation control. Traditional Chinese Medicine (TCM) processing techniques, such as stir-frying, are believed to enhance herb efficacy, yet the molecular basis remains insufficiently understood. Here, we demonstrate that stir-fried Perilla fruit significantly increase luteolin content-a flavonoid compound capable of binding PPAR-γ at key residues (SER289, HIS323, PHE360, TYR473) as validated by molecular docking and dynamics simulation. In ox-LDL-induced RAW264.7 macrophages, luteolin promoted cholesterol efflux, reduced lipid accumulation, and upregulated PPAR-γ pathway proteins, effects that were abolished by the antagonist GW9662. These results provide mechanistic insight into the enhanced efficacy of stir-fried Perilla and highlight luteolin as a promising natural compound for atherosclerosis prevention.

Keywords

Perilla fruit / PPAR-γ / Traditional chinese medicine processing / Lipid regulation / Foam cell

Cite this article

Download citation ▾
Yiqi Yan, Tian Xie, Ran An, Guangzhe Yao, Ming Huang, Ke Xiong. Traditional processing unlocks anti-atherogenic potential of perilla fruit via PPAR-γ activation by luteolin. Bioresources and Bioprocessing, 2025, 12(1): 124 DOI:10.1186/s40643-025-00957-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Khalili A, Dutz JP. Immunosuppression/infections across indications. Curr Probl Dermatol, 2018, 53: 28-36

[2]

Burger F, Baptista D, Roth A, da Silva RF, Montecucco F, Mach F, Brandt KJ, Miteva K. NLRP3 inflammasome activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis. Int J Mol Sci, 2021, 23(1 340

[3]

Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): The Single global macromolecular structure archive. Methods Mol Biol, 2017, 1607: 627-641

[4]

Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Front Cardiovasc Med, 2023, 10 1213177

[5]

Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: pathogenesis and therapeutic targets. Pharmacol Ther, 2023, 245 108391

[6]

Choudhury RP, Lee JM, Greaves DR. Mechanisms of disease: Macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med, 2005, 2(6): 309-315

[7]

Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT, Sobota RM, Kaldis P, Nordlund P. Modulation of protein-interaction states through the cell cycle. Cell, 2018, 173(6): 1481-1494.e13

[8]

Dixon DL, Pamulapati LG, Bucheit JD, Sisson EM, Smith SR, Kim CJ, Wohlford GF, Pozen J. Recent updates on the use of PCSK9 inhibitors in patients with atherosclerotic cardiovascular disease. Curr Atheroscler Rep, 2019, 21(5 16

[9]

Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res, 2008, 102(3): 283-294

[10]

Feingold KR (2024) Cholesterol lowering drugs. in k. r. Feingold (Eds.) et al Endotext, MDText.com, Inc.

[11]

Franceschelli S, De Cecco F, Pesce M, Ripari P, Guagnano MT, Nuevo AB, Grilli A, Sancilio S, Speranza L. Hydroxytyrosol reduces foam cell formation and endothelial inflammation regulating the PPAR-γ/LXRα/ABCA1 pathway. Int J Mol Sci, 2023, 24(3 2057

[12]

Guo X, Li B, Wen C, Zhang F, Xiang X, Nie L, Chen J, Mao L. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell Mol Life Sci, 2023, 80(5 137

[13]

Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol Mech Dis, 2006, 1: 297-329

[14]

He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer's disease. Redox Biol, 2023, 66 102848

[15]

Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, Martinez Molina D. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc, 2014, 9(9): 2100-2122

[16]

Jiang T, Ren K, Chen Q, Li H, Yao R, Hu H, Lv YC, Zhao GJ. Leonurine prevents atherosclerosis via promoting the expression of ABCA1 and ABCG1 in a PPAR-γ/LXR-α signaling pathway-dependent manner. Cell Physiol Biochem, 2017, 43(4): 1703-1717

[17]

Kaseke T, Opara UL, Fawole OA. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: effect of preharvest and processing factors. Heliyon, 2020, 6(9 e04962

[18]

Khan NS, Pradhan D, Choudhary S, Swargam S, Jain AK, Poddar NK. The interaction analysis between human serum albumin with chlorpyrifos and its derivatives through sub-atomic docking and molecular dynamics simulation techniques. 3 Biotech, 2022, 12(10 272

[19]

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res, 2021, 49(D1 D1388

[20]

Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla fruit oil-fortified soybean milk intake alters levels of serum triglycerides and antioxidant status, and influences phagocytotic activity among healthy subjects: A randomized placebo-controlled trial. Nutrients, 2022, 14(9 1721

[21]

Lee JH, Park KH, Lee MH, Kim HT, Seo WD, Kim JY, Baek IY, Jang DS, Ha TJ. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem, 2013, 136(2): 843-852

[22]

Li X, Zhu R, Jiang H, Yin Q, Gu J, Chen J, Ji X, Wu X, Fu H, Wang H, Tang X, Gao Y, Wang B, Ji Y, Chen H. Autophagy enhanced by curcumin ameliorates inflammation in atherogenesisviathe TFEB-P300-BRD4 axis. Acta Pharmaceutica Sinica B, 2022, 12(5): 2280-2299

[23]

Libby P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855): 524-533

[24]

Libby P. Inflammation and the pathogenesis of atherosclerosis. Vasc Pharmacol, 2024, 154 107255

[25]

Lin CS, Lin FY, Ho LJ, Tsai CS, Cheng SM, Wu WL, Huang CY, Lian CH, Yang SP, Lai JH. PKC-δ signalling regulates SR-A and CD36 expression and foam cell formation. Cardiovasc Res, 2012, 95(3): 346-355

[26]

Ma C, Li Y, Tian M, Deng Q, Qin X, Lu H, Gao J, Chen M, Weinstein LS, Zhang M, Bu P, Yang J, Zhang Y, Zhang C, Zhang W. Gsα regulates macrophage foam cell formation during atherosclerosis. Circ Res, 2024, 134(7 e34

[27]

Marasinghe CK, Yoon SD, Je JY. Two peptides LLRLTDL and GYALPCDCL inhibit foam cell formation through activating PPAR-γ/LXR-α signaling pathway in oxLDL-treated RAW264.7 macrophages. BioFactors, 2024

[28]

Masuda A, Hidaka K, Honda S, Taniguchi A, Doi S, Masuda T. Radical scavenging properties of roasted egoma (Perilla frutescens var. frutescens) oils and identification of their characteristic scavengers. J Nutr Sci Vitaminol, 2018, 64(6): 466-472

[29]

Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, Goh BH, Pusparajah P, Yap WH. In vitro evaluation of the involvement of Nrf2 in maslinic acid-mediated anti-inflammatory effects in atheroma pathogenesis. Life Sci, 2021, 278 119658

[30]

Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. Int J Mol Sci, 2020, 21(7 2632

[31]

Pan F, Wen B, Luo X, Wang C, Wang X, Guan X, Xu Y, Dang W, Zhang M. Influence of refining processes on the bioactive composition, in vitro antioxidant capacity, and their correlation of perilla seed oil. J Food Sci, 2020, 85(4): 1160-1166

[32]

Paradee N, Koonyosying P, Kusirisin W, Janthip R, Kanjanapothi D, Pattanapanyasat K, Srichairatanakool S. Analgesic, anti-inflammatory and anti-ulcer properties of Thai Perilla frutescence fruit oil in animals. Biosci Rep, 2021, 41(1 BSR20203166

[33]

Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys, 2020, 153(4 044130

[34]

Pramanik S, Sil AK. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch, 2024, 476(1): 59-74

[35]

Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Nanomed Nanotechnol Biol Med, 2012, 8(suppl 1): S59-S68

[36]

Silva AR, Pacheco P, Vieira-de-Abreu A, Maya-Monteiro CM, D'Alegria B, Magalhães KG, de Assis EF, Bandeira-Melo C, Castro-Faria-Neto HC, Bozza PT. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: a MCP-1/CCL2 regulated phenomenon. Biochim Biophys Acta, 2009, 1791(11): 1066-1075

[37]

Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L. Perilla frutescens leaf extract and fractions: polyphenol composition, antioxidant, enzymes (α-glucosidase, acetylcholinesterase, and tyrosinase) inhibitory, anticancer, and antidiabetic activities. Foods, 2021, 10(2 315

[38]

Wang K, Zhou W, Hu G, Wang L, Cai R, Tian T. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol Life Sci, 2023, 80(12 358

[39]

Wu H, Ballantyne CM. Dyslipidaemia: PCSK9 inhibitors and foamy monocytes in familial hypercholesterolaemia. Nat Rev Cardiol, 2017, 14(7): 385-386

[40]

Yuqin L, Wenhui Y, Liye P, Mei W, Xiangdong C, Ruirui Ma, Dongmei S. Effects of different frying techniques on the chemical composition of perilla seeds. J Jiangxi Univ Tradit Chin Med, 2020, 02: 74-79

[41]

Zhang YY, Zhao ZD, Kong PY, Gao L, Yu YN, Liu J, Wang PQ, Li B, Zhang XX, Yang LQ, Wang Z. A comparative pharmacogenomic analysis of three classic TCM prescriptions for coronary heart disease based on molecular network modeling. Acta Pharmacol Sin, 2020, 41(6): 735-744

[42]

Zheng S, Huang H, Li Y, Wang Y, Zheng Y, Liang J, Zhang S, Liu M, Fang Z. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res, 2021, 169 105639

[43]

Luo Yuqin, Yang Wenhui, Pan Liye, Wei Mei, Chen Xiangdong, Ma Ruirui& Sun Dongmei (2020). Effects of different frying techniques on the chemical composition of perilla seeds. Journal of Jiangxi University of Traditional Chinese Medicine (02), 74-79

Funding

Tianjin Research Innovation Project for Postgraduate Students(2022kj159)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/