Identification and characterization of two AA9 lytic polysaccharide monooxygenases isolated from the enzymatic arsenal in Phanerochaetechrysosporium

Xiaofeng Xu , Chong-En Chu , Nuo Li , Xiao-Bao Sun , Junyan Han , Zihan Xu , Yu Liu , Jia-Kun Wang , Tie-Tao Zhang , Qian Wang

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 112

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) :112 DOI: 10.1186/s40643-025-00950-0
Research
research-article

Identification and characterization of two AA9 lytic polysaccharide monooxygenases isolated from the enzymatic arsenal in Phanerochaetechrysosporium

Author information +
History +
PDF

Abstract

White rot fungi including Phanerochaete chrysosporium are known for their ability to mineralize plant-derived materials, such as cellulose, hemicellulose, and lignin, into CO2 and H2O. This process is achieved through a diverse array of hydrolytic and oxidative enzymes. However, the mode of action and specific characteristics of lytic polysaccharide monooxygenases (LPMOs) from P. chrysosporium are not well understood. In this study, two auxiliary activity (AA) family 9 genes from P. chrysosporium, PchAA9C and PchAA9F, were heterologously expressed in Pichia pastoris and functionally characterized. The recombinant PchAA9C and PchAA9F exhibited optimal activity at 60 °C and pH 6.0, with their activity significantly enhanced by 0.5–3.0 mmol/L ascorbic acid (P < 0.05). Substrate specificity analysis revealed that both PchAA9C and PchAA9F displayed robust activity against Icelandic moss lichenan, phosphoric acid swollen cellulose, and microcrystalline cellulose, indicating a preference for breaking down β-(Glc1 → 4Glc)-linked substrates. Further analysis using HPAEC-PAD and MALDI-TOF-MS revealed that PchAA9C functioned as a C1-specific oxidizing enzyme, whereas PchAA9F targeted both C1 and C4 positions of sugar rings. Synergistic experiments involving an enzyme cocktail of xylanase, glucanase, and pectinase showed that PchAA9C and PchAA9F significantly enhanced the production of reducing sugars from corn and soybean straws. Notably, PchAA9F represents the first reported C1/C4-double-oxidizing LPMO isolated from P. chrysosporium. This discovery provides new insights into the molecular basis of the biodegradation capabilities of wood-decaying fungi and highlights PchAA9F as a promising candidate for applications in lignocellulosic biomass biorefinery.

Keywords

Phanerochaete chrysosporium / LPMO / Lignocellulose deconstruction / Synergistic effect

Cite this article

Download citation ▾
Xiaofeng Xu, Chong-En Chu, Nuo Li, Xiao-Bao Sun, Junyan Han, Zihan Xu, Yu Liu, Jia-Kun Wang, Tie-Tao Zhang, Qian Wang. Identification and characterization of two AA9 lytic polysaccharide monooxygenases isolated from the enzymatic arsenal in Phanerochaetechrysosporium. Bioresources and Bioprocessing, 2025, 12(1): 112 DOI:10.1186/s40643-025-00950-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A, 2014, 111(17): 6287-6292.

[2]

Agrawal D, Basotra N, Balan V, Tsang A, Chadha BS. Discovery and expression of thermostable LPMOs from thermophilic fungi for producing efficient lignocellulolytic enzyme cocktails. Appl Biochem Biotechnol, 2020, 191(2): 463-481.

[3]

Agrawal D, Kaur B, Kaur Brar K, Chadha BS. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. Bioresour Technol, 2020, 308. 123257

[4]

Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen , Schmidt B, Zurich RH, Van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun, 2021, 12(1. 1230

[5]

Bhatia S, Yadav SK. Novel catalytic potential of a hyperthermostable mono-copper oxidase (LPMO-AOAA17) for the oxidation of lignin monomers and depolymerisation of lignin dimer in aqueous media. Int J Biol Macromol, 2021, 186: 563-573.

[6]

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.

[7]

Calderaro F, Keser M, Akeroyd M, Bevers LE, Eijsink VGH, Várnai A, Van den Berg MA. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions. Biotechnol Biofuels, 2020, 13(1): 195-211.

[8]

Cannella D, Möllers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun, 2016, 7: 11134.

[9]

Cao JW, Deng Q, Gao DY, He B, Yin SJ, Qian LC, Wang JK, Wang Q. A novel bifunctional glucanase exhibiting high production of glucose and cellobiose from rumen bacterium. Int J Biol Macromol, 2021, 173: 136-145.

[10]

Cheng C, Haider J, Liu P, Yang J, Tan Z, Huang T, Lin J, Jiang M, Liu H, Zhu L. Engineered LPMO significantly boosting cellulase-catalyzed depolymerization of cellulose. J Agric Food Chem, 2020, 68(51): 15257-15266.

[11]

Chorozian K, Karnaouri A, Tryfona T, Kondyli NG, Karantonis A, Topakas E. Characterization of a novel AA16 lytic polysaccharide monooxygenase from Thermothelomyces thermophilus and comparison of biochemical properties with an LPMO from AA9 family. Carbohydr Polym, 2024, 342. 122387

[12]

Corrêa TLR, Júnior AT, Wolf LD, Buckeridge MS, Dos Santos LV, Murakami MT. An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. Biotechnol Biofuels, 2019, 12: 117-130.

[13]

Couturier M, Ladèveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoël-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol, 2018, 14(3): 306-310.

[14]

Dan M, Zheng Y, Zhao G, Hsieh YSY, Wang D. Current insights of factors interfering the stability of lytic polysaccharide monooxygenases. Biotechnol Adv, 2023, 67. 108216

[15]

Deng Q, Sun XB, Gao DY, Wang YT, Liu Y, Li N, Wang ZG, Liu MQ, Wang JK, Wang Q. Characterization of two novel rumen-derived exo-polygalacturonases: catalysis and molecular simulations. Microorganisms, 2023, 11(3): 760-775.

[16]

Deng Q, Li N, Bai SN, Cao JQ, Jin YL, Zhang HE, Wang JK, Wang Q. SbPL1CE8 from Segatella bryantii combines with SbGH28GH105 in a multi-enzyme cascade for pectic biomass utilization. Int J Biol Macromol, 2024, 279. 135217

[17]

Di Domenico V, Theibich Y, Brander S, Berrin JG, Johansen KS, Frandsen KEH, Lo Leggio L. Anions and citrate inhibit LsAA9A, a lytic polysaccharide monooxygenase (LPMO). FEBS J, 2025.

[18]

Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res, 2022, 50(D1): D571-D577.

[19]

Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels, 2019, 12: 58.

[20]

Elshami NH, El-Housseiny GS, Yassien MA, Hassouna NA. Statistical and neural network modeling of β-glucanase production by Streptomyces albogriseolus (PQ002238), and immobilization on chitosan-coated magnetic microparticles. Bioresour Bioprocess, 2025, 12(1): 32.

[21]

Forsberg Z, Mackenzie AK, Sorlie M, Rohr Å, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VGH. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A, 2014, 111(23): 8446-8451.

[22]

Frandsen KEH, Haon M, Grisel S, Henrissat B, Lo Leggio L, Berrin JG. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs). J Biol Chem, 2021, 296. 100086

[23]

Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SWA, Vincken JP, van Berkel WJH, Kabel MA, Gruppen H. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels, 2016, 9(1): 186-202.

[24]

Gao W, Li T, Zhou HC, Ju J, Yin H. Carbohydrate-binding modules enhance H2O2 tolerance by promoting lytic polysaccharide monooxygenase active site H2O2 consumption. J Biol Chem, 2024, 300(1): 105573-105586.

[25]

Grieco MAB, Haon M, Grisel S, de Oliveira-Carvalho AL, Magalhães AV, Zingali RB, Pereira N, Berrin JG. Evaluation of the enzymatic arsenal secreted by Myceliophthora thermophila during growth on sugarcane bagasse with a focus on LPMOs. Front Bioeng Biotechnol, 2020, 8: 1028-1038.

[26]

Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc Natl Acad Sci U S A, 2018, 115(19): 4915-4920.

[27]

Hüttner S, Várnai A, Petrović DM, Bach CX, Anh DTK, Thanh VN, Eijsink VGH, Larsbrink J, Olsson L. Specific xylan activity revealed for AA9 lytic polysaccharide monooxygenases of the thermophilic fungus Malbranchea cinnamomea by functional characterization. Appl Environ Microbiol, 2019, 85(23. e01408

[28]

Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.. J Biol Chem, 2014, 289(5): 2632-42.

[29]

Kim IJ, Seo N, An HJ, Kim JH, Harris PV, Kim KH. Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. Biotechnol Biofuels, 2017, 10: 46-53.

[30]

Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol, 1978, 117(3): 277-285.

[31]

Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, Goodell B, Alfredsen G, Westereng B, Eijsink VGH, Yoshida MA. Lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol, 2016, 82(22): 6557-6572.

[32]

Kommedal EG, Angeltveit CF, Klau LJ, Ayuso-Fernández I, Arstad B, Antonsen SG, Stenstrom Y, Ekeberg D, Gírio F, Carvalheiro F, Horn SJ, Aachmann FL, Eijsink VGH. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases. Nat Commun, 2023, 14(1): 1063-1074.

[33]

Konan D, Ndao A, Koffi E, Elkoun S, Robert M, Rodrigue D, Adjallé K. Biodecomposition with Phanerochaete chrysosporium: a review. AIMS Microbiol, 2024, 10(4): 1068-1101.

[34]

Kumari U, Banerjee T, Narayanan N, Singh N. Degradation of co-applied atrazine and fipronil in Phanerochaete chrysosporium aug-mented biobeds. Bull Environ Contam Toxicol, 2023, 111(4): 50-55.

[35]

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J Biol Chem, 2018, 293(2): 523-531.

[36]

Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1): W293-W296.

[37]

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAzy database to integrate auxiliary redox enzymes. Biotechnol Biofuels, 2013, 6(1): 41.

[38]

Li XX, Dilokpimol A, Kabel MA, de Vries RP. Fungal xylanolytic enzymes: Diversity and applications. Bioresour Technol, 2022, 344. 126290

[39]

Li N, Han JY, Zhou YB, Zhang HE, Xu XF, He B, Liu MQ, Wang JK, Wang Q. A rumen-derived bifunctional glucanase/mannanase uncanonically releases oligosaccharides with a high degree of polymerization preferentially from branched substrates. Carbohydr Polym, 2024, 330. 121828

[40]

Liu JW, Xu Q, Wu Y, Sun D, Zhu JR, Liu C, Liu WJ. Carbohydrate-binding modules of ChiB and ChiC promote the chitinolytic system of Serratia marcescens BWL1001. Enzyme Microb Technol, 2023, 162. 110118

[41]

Liu JW, Shi JN, Gao JH, Shi R, Zhu JR, Jensen MS, Li CC, Yang J, Zhao SY, Sun AF, Sun D, Zhang Y, Liu C, Liu WJ. Functional studies on tandem carbohydrate-binding modules of a multimodular enzyme possessing two catalytic domains. Appl Environ Microbiol, 2024, 90(7. e0088824

[42]

Long LK, Sun L, Ding DF, Chen KX, Lin QY, Ding SJ. Two C1-oxidizing lytic polysaccharide monooxygenases from Ceriporiopsis subvermispora enhance the saccharification of wheat straw by a commercial cellulase cocktail. Process Biochem, 2021, 110: 243-250.

[43]

Ma L, Wang MM, Gao Y, Wu YH, Zhu CQ, An SY, Tang SY, She QS, Gao JM, Meng XH. Functional study of a lytic polysaccharide monooxygenase MsLPMO3 from Morchella sextelata in the oxidative degradation of cellulose. Enzyme Microb Technol, 2024, 173. 110376

[44]

Machado AS, Valadares F, Silva TF, Milagres AMF, Segato F, Ferraz A. The secretome of Phanerochaete chrysosporium and Trametes versicolor grown in microcrystalline cellulose and use of the enzymes for hydrolysis of lignocellulosic materials. Front Bioeng Biotechnol, 2020, 8: 826-840.

[45]

Mahajan S, Master ER. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol, 2010, 86(6): 1903-1914.

[46]

Mazurkewich S, Seveso A, Hüttner S, Brändén G, Larsbrink J. Structure of a C1/C4-oxidizing AA9 lytic polysaccharide monooxygenase from the thermophilic fungus Malbranchea cinnamomea. Acta Crystallogr D Struct Biol, 2021, 77(8): 1019-1026.

[47]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37(5): 1530-1534.

[48]

Nakagawa YS, Kudo M, Onodera R, Ang LZP, Watanabe T, Totani K, Eijsink VGH, Vaaje-Kolstad G. Analysis of four chitin-active lytic polysaccharide monooxygenases from Streptomyces griseus reveals functional variation. J Agric Food Chem, 2020, 68(47): 13641-13650.

[49]

O’Dell WB, Swartz PD, Weiss KL, Meilleur F. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction. Acta Crystallogr F Struct Biol Commun, 2017, 73: 70-78.

[50]

Park HJ, Gwon SY, Lee JM, Koo NK, Min K. Synergetic effect of lytic polysaccharide monooxygenase from Thermobifida fusca on saccharification of agrowastes. Bioresour Technol, 2023, 378. 129015

[51]

Probst C, Hallas-Møller M, Ipsen , Brooks JT, Andersen K, Haon M, Berrin JG, Martens HJ, Nichols CB, Johansen KS, Alspaugh JA. A fungal lytic polysaccharide monooxygenase is required for cell wall integrity, thermotolerance, and virulence of the fungal human pathogen Cryptococcus neoformans. PLoS Pathog, 2023, 19(4. e1010946

[52]

Qin X, Zou JH, Yang K, Li JY, Wang XL, Tu T, Wang Y, Yao B, Huang HQ, Luo HY. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases. Bioresour Technol, 2022, 364. 128027

[53]

Raheja Y, Singh V, Kumar N, Agrawal D, Sharma G, Di Falco M, Tsang A, Chadha BS. Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide monooxygenases. Appl Microbiol Biotechnol, 2024, 108(1): 444-460.

[54]

Ravalason H, Gl J, Mollé D, Pasco M, Coutinho PM, Lapierre C, Pollet B, Bertaud F, Petit-Conil M, Grisel S, Sigoillot JC, Asther M, Herpoël-Gimbert I. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol, 2008, 80(4): 719-733.

[55]

Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM, Coelho E, Coimbra MA. Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers' spent grain. Bioresour Bioprocess, 2022, 9(1): 105.

[56]

Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, Marques RDS, Sweeney ST, Besser K, Elias L, Pesante G, Li Y, Dowle AA, Bates R, Gomez LD, Simister R, Davies GJ, Walton PH, Bruce NC, McQueen-Mason SJ. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun, 2018, 9(1): 756.

[57]

Sabbadin F, Urresti S, Henrissat B, Avrova AO, Welsh LRJ, Lindley PJ, Csukai M, Squires JN, Walton PH, Davies GJ, Bruce NC, Whisson SC, McQueen-Mason SJ. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science, 2021, 373(6556): 774-779.

[58]

Sadaqat B, Khatoon N, Malik AY, Jama A, Farooq U, Ali MI, He H, Liu FJ, Guo HG, Urynowicz M, Wang QR, Huang ZX. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Sci Rep, 2020, 10(1): 20240-20249.

[59]

Sharma G, Kaur B, Singh V, Raheja Y, Falco MD, Tsang A, Chadha BS. Genome and secretome insights: unravelling the lignocellulolytic potential of Myceliophthora verrucosa for enhanced hydrolysis of lignocellulosic biomass. Arch Microbiol, 2024, 206(5): 236.

[60]

Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, Wilson LFL, Tandrup T, Tovborg M, Schnorr K, Johansen KS, Henrissat B, Walton PH, Lo Leggio L, Dupree P. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nat Commun, 2017, 8(1): 1064.

[61]

Singhania RR, Dixit P, Patel AK, Giri BS, Kuo CH, Chen CW, Dong CD. Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. Bioresour Technol, 2021, 335. 125261

[62]

Skalny AV, Mazaletskaya AL, Ajsuvakova OP, Bjørklund G, Skalnaya MG, Chao JC, Chernova LN, Shakieva RA, Kopylov PY, Skalny AA, Tinkov AA. Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD). J Trace Elem Med Biol, 2020, 58. 126445

[63]

Stepnov AA, Forsberg Z, Sørlie M, Nguyen GS, Wentzel A, Røhr ÅK, Eijsink VGH. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnol Biofuels, 2021, 14(1. 28

[64]

Støpamo FG, Sulaeva I, Budischowsky D, Rahikainen J, Marjamaa K, Kruus K, Potthast A, Eijsink VGH, Várnai A. The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers. Biotechnol Biofuels Bioprod, 2024, 17(1): 118-133.

[65]

Sun XB, Gao DY, Cao JW, Liu Y, Rong ZT, Wang JK, Wang Q. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds. Int J Biol Macromol, 2023, 230. 123133

[66]

Suzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, Henrissat B, Wiebenga A, Vankuyk PA, Barry K, Lindquist E, LaButti K, Lapidus A, Lucas S, Coutinho P, Gong YC, Samejima M, Mahadevan R, Abou-Zaid M, de Vries RP, Igarashi K, Yadav JS, Grigoriev IV, Master ER. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics, 2012, 13: 444-460.

[67]

Tamburrini KC, Kodama S, Grisel S, Haon M, Nishiuchi T, Bissaro B, Kubo Y, Longhi S, Berrin JG. The disordered C- terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration. Proc Natl Acad Sci U S A, 2024, 121(13. e2319998121

[68]

Tõlgo M, Hegnar OA, Østby H, Várnai A, Vilaplana F, Eijsink VGH, Olsson L. Comparison of six lytic polysaccharide monooxygenases from Thermothielavioides terrestris shows that functional variation underlies the multiplicity of LPMO genes in filamentous fungi. Appl Environ Microbiol, 2022, 88(6. e0009622

[69]

Tõlgo M, Hegnar OA, Larsbrink J, Vilaplana F, Eijsink VGH, Olsson L. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases. Biotechnol Biofuels Bioprod, 2023, 16(1. 2

[70]

Uchiyama T, Uchihashi T, Ishida T, Nakamura A, Vermaas JV, Crowley MF, Samejima M, Beckham GT, Igarashi K. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. Sci Adv, 2022, 8(51. eade5155

[71]

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VGH. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 2010, 330(6001): 219-222.

[72]

Wang Q, Fu SJ, Sun JY, Weng XY. Characterization of a thermostable alkaline phytase from Bacillus licheniformis ZJ-6 in Pichia pastoris. World J Microbiol Biotechnol, 2011, 27(5): 1247-1253.

[73]

Wang Q, Zhao LL, Sun JY, Liu JX, Weng XY. Enhancing catalytic activity of a hybrid xylanase through single substitution of Leu to Pro near the active site. World J Microbiol Biotechnol, 2012, 28(3): 929-935.

[74]

Wang Q, Du W, Weng XY, Liu MQ, Wang JK, Liu JX. Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris. Appl Biochem Biotechnol, 2015, 175(3): 1318-1329.

[75]

Wang BJ, Walton PH, Rovira C. Molecular mechanisms of oxygen activation and hydrogen peroxide formation in lytic polysaccharide monooxygenases. ACS Catal, 2019, 9(6): 4958-4969.

[76]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46(W1): W296-W303.

[77]

Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE, 2011, 6(11. e27807

[78]

Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrom YH, Eijsink VGH. Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A, 2013, 1271(1): 144-152.

[79]

Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VGH, Sandgren M. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem, 2013, 288(18): 12828-12839.

[80]

Wymelenberg AV, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D. Transcriptome and secretome analyses of phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 2009, 75(12): 4058-4068.

[81]

Xin DL, Blossom BM, Lu XY, Felby C. Improving cellulases hydrolytic action: an expanded role for electron donors of lytic polysaccharide monooxygenases in cellulose saccharification. Bioresour Technol, 2022, 346. 126662

[82]

Xu YF, Dong FY, Wang RX, Ajmal M, Liu XY, Lin H, Chen HG. Alternative splicing analysis of lignocellulose-degrading enzyme genes and enzyme variants in Aspergillus niger. Appl Microbiol Biotechnol, 2024, 108(1): 302-312.

[83]

Zhang YHP, Cui J, Lynd LR, Kuang LR. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromol, 2006, 7(2): 644-648.

[84]

Zhang X, Chen KX, Long LK, Ding SJ. Two C1-oxidizing AA9 lytic poly-saccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase. Appl Microbiol Biotechnol, 2021, 105(23): 8739-8759.

[85]

Zhang N, Yang JH, Li ZM, Haider J, Zhou YY, Ji Y, Schwaneberg U, Zhu LL. Influences of the carbohydrate-binding module on a fungal starch-active lytic polysaccharide monooxygenase. J Agric Food Chem, 2023, 71(47): 18405-18413.

[86]

Zhao HJ, Su HP, Sun J, Dong H, Mao XZ. Bioconversion of α-chitin by a lytic polysaccharide monooxygenase OsLPMO10A coupled with chitinases and the synergistic mechanism analysis. J Agric Food Chem, 2024, 72(13): 7256-7265.

[87]

Zhu SY, Chen AW, Zhang JL, Luo S, Yang JZ, Chai YZ, Zeng JH, Bai M, Yang ZH, Lu G. Deciphering the biodegradation of thiamethoxam by Phanerochaetechrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation. J Hazard Mater, 2024, 480. 136327

Funding

National Key R&D Program of China (2023YFD1300902)

Fundamental Research Funds for the Central Universities(226-2024-00139)

Jilin Provincial Key Research and Development Plan Project(20230402033GH)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/