Enhancement of Menaquinone-7 production in Bacillus subtilis by optimizing the medium components through response surface methodology

Rui Zhang , Han Wang , Li Wang , Zhiming Zheng

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1)

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) DOI: 10.1186/s40643-025-00934-0
Research
research-article

Enhancement of Menaquinone-7 production in Bacillus subtilis by optimizing the medium components through response surface methodology

Author information +
History +
PDF

Keywords

Bacillus subtilis / MK-7 / Medium optimization / Response surface methodology

Cite this article

Download citation ▾
Rui Zhang, Han Wang, Li Wang, Zhiming Zheng. Enhancement of Menaquinone-7 production in Bacillus subtilis by optimizing the medium components through response surface methodology. Bioresources and Bioprocessing, 2025, 12(1): DOI:10.1186/s40643-025-00934-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdinarayanaK, EllaiahP. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus Sp. J Pharm Pharm Sci, 2002, 5: 281-287.

[2]

BerenjianA, MahanamaR, TalbotA, BiffinR, RegtopH, ValtchevP, KavanaghJ, DehghaniF. Efficient media for high menaquinone-7 production: response surface methodology approach. N Biotechnol, 2011, 28: 665-672.

[3]

Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2012) Advances in menaquinone-7 production by Bacillus subtilis Natto: fed-batch glycerol addition. Am J Biochem Biotechnol 8. https://doi.org/10.3844/ajbbsp.2012.105.110

[4]

BeulensJWJ, BoothSL, van den HeuvelEGHM, StoecklinE, BakaA, VermeerC. The role of menaquinones (vitamin K2) in human health. Br J Nutr, 2013, 110: 1357-1368.

[5]

Beulens JWJ, Bots ML, Atsma F, et al (2009) High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 203:489–493. https://doi.org/10.1016/j.atherosclerosis.2008.07.010

[6]

BiałkowskaA, MarzenaJ-K, HalinaK, EwaG. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl Microbiol Biotechnol, 2016, 100: 2663-2676.

[7]

BisgaardJ, ZahnJA, TajsoleimanT, RasmussenT, HuusomJK, GernaeyKV. Data-based dynamic compartment model: modeling of E. coli fed-batch fermentation in a 600m3 bubble column. J Ind Microbiol Biotechnol, 2022, 49kuac021.

[8]

BrudzynskiK, Maldonado-AlvarezL. Identification of ubiquinones in honey: a new view on their potential contribution to honey’s antioxidant state. Molecules, 2018, 233067.

[9]

Cahyati RD, Hudiyono S, Helianti I (2021) Modification and optimization of low-cost medium for recombinant alkalothermophilic xylanase production from Pichia pastoris KM71. In: Proceedings of the 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Atlantis Press, pp 91–96. https://doi.org/10.2991/absr.k.210810.018

[10]

CaiC, ZhengX. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotechnol, 2009, 36: 875-883.

[11]

ChenZ, LiQ, LiuH, YuN, XieT, YangM, ShenP, ChenX. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Appl Microbiol Biotechnol, 2010, 85: 1353-1360.

[12]

ChenT, XiaH, CuiS, LvX, LiuL. Combinatorial Methylerythritol phosphate pathway engineering and process optimization for increased menaquinone-7 synthesis in Bacillus subtilis. J Microbiol Biotechnol, 2020, 30: 762-769.

[13]

Cui S, Xia H, Chen T, Gu Y, Lv X, Liu Y, Li J, Du G, Liu L (2020) Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. Iscience 23 https://doi.org/10.1016/j.isci.2020.100918

[14]

DalmeijerGW, van der SchouwYT, MagdeleynsE, AhmedN, VermeerC, BeulensJWJ. The effect of menaquinone-7 supplementation on Circulating species of matrix Gla protein. Atherosclerosis, 2012, 225: 397-402.

[15]

De Eustaquio-CampilloS, CornilleauA, GuérinC, Carballido-LópezC, ChastanetR. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis. PLoS ONE, 2017, 12e0189694.

[16]

EkpenyongM, et al.. Bioprocess optimization of nutritional parameters for enhanced Anti-leukemic L-Asparaginase production by Aspergillus Candidus UCCM 00117: a sequential statistical approach. Int J Pept Res Ther, 2021, 27: 1501-1527.

[17]

El KantarS, KoubaaM. Valorization of low-cost substrates for the production of odd chain fatty acids by the oleaginous yeast Yarrowia lipolytica. Fermentation, 2022, 8284.

[18]

FengY, LiuS, JiaoY, GaoH, WangM, DuG, ChenJ. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B.subtilis WB600 through a combined strategy. Appl Microbiol Biotechnol, 2017, 101: 1509-1520.

[19]

FerlandG. Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 2012, 3: 204-212.

[20]

GaneshanS, KimSH, VujanovicV. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. Bioresour Bioprocess, 2021, 863.

[21]

GröberU, SchmidtJ, KistersK. Magnesium in prevention and therapy. Nutrients, 2015, 7: 8199-8226.

[22]

HeZ, PengH, WangS, ZhangJ, LiX, MaC, ZhaoX. High-density fermentation of Bacillus subtilis with corn steep liquor as an alternative substrate. J Agric Vet Sci, 2020, 13: 12-17.

[23]

HolmbergC, RutbergB. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol Microbiol, 1991, 5: 2891-2900.

[24]

HuX, LiuW, LuoM, RenL, JiX, HuangH. Enhancing menaquinone-7 production by Bacillus Natto R127 through the nutritional factors and surfactant. Appl Biochem Biotechnol, 2017, 182: 1630-1641.

[25]

IslerO, RueggR, ChopardditjeanLH, WintersteinA, WissO. Synthese and isolierung von vitamin K2 and isoprenologen verbindungen. Helv Chim Acta, 1958, 41: 786-807.

[26]

JensenWA. Response surface methodology: process and product optimization using designed experiments 4th edition. J Qual Technol, 2017, 49: 186-188.

[27]

KhuriAI. Response surface methodology. WIRE Comput Stat, 2010, 2: 128-149.

[28]

LandriscinaM, BagaláC, MandinovaA, SoldiR, MicucciI, BellumS, PrudovskyI, MaciagT. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem, 2001, 276: 25549-25557.

[29]

LeeSY, LeeD-Y, KimTY. Systems biotechnology for strain improvement. Trends Biotechnol, 2005, 23: 349-358.

[30]

LiY, ChenJ, DuanL, LiS. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res Clin Pract, 2018, 136: 39-51.

[31]

LiC, LiM, ZhangW, XuJ. Accelerating the menaquinone-7 production in Bacillus amyloliquefaciens by optimization of the biosynthetic pathway and medium components. Syst Microbiol Biomanuf, 2023, 3: 776-791.

[32]

LioyVS, MachonC, TaboneM, Gonzalez-PastorJE, DaugelaviciusR, AyoraS, AlonsoJC. The ζ toxin induces a set of protective responses and dormancy. PLoS ONE, 2012, 7e30282.

[33]

LiuY, YangZ, XueZ, QianS, WangZ, ZhuH, DingX, YuF. Influence of site-directed mutagenesis of ubia, overexpression of dxr, MenA and ubiE, and supplementation with precursors on menaquinone production in Elizabethkingia meningoseptica. Process Biochem, 2018, 68: 64-72.

[34]

LuoMM, RenLJ, ChenSL, JiXJ, HuangH. Effect of media components and morphology of Bacillus Natto on menaquinone-7 synthesis in submerged fermentation. Biotechnol Bioprocess Eng, 2017, 21: 777-786.

[35]

MinJH, LeeJS, YangJD, KooS. The Friedel-Crafts allylation of a prenyl group stabilized by a sulfone moiety: expeditious syntheses of ubiquinones and menaquinones. J Org Chem, 2003, 68: 7925-7927.

[36]

OliveiraAP, NielsenJ, FörsterJ. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol, 2005, 539.

[37]

PawarSV, RathodVK. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model. Prep Biochem Biotechnol, 2018, 48: 24-33.

[38]

PontesMH, GroismanEA. Protein synthesis controls phosphate homeostasis. Genes Dev, 2018, 32: 79-92.

[39]

PrejanoM, AlbertoME, RussoN, ToscanoM, MarinoT. The effects of the metal ion substitution into the active site of metalloenzymes: A theoretical insight on some selected cases. Catalysts, 2020, 101038.

[40]

RobakP, et al.. Identification of TRPM6 and TRPM7 expression changes in response to a diet supplemented with inulin in Porcine kidney. Arch Anim Breed, 2016, 59: 267-274.

[41]

SatoT, YamadaY, OhtaniY, MitsuiN, ArakiS. Efficient production of menaquinone (vitamin K2) by a menadione-resistant mutant of Bacillus subtilis. J Ind Microbiol Biotechnol, 2001, 26: 115-120.

[42]

SatoT, YamadaY, OhtaniY, MitsuiN, MurasawaH, ArakiS. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng, 2001, 91: 16-20.

[43]

SatoT, SchurgersLJ, UenishiK. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J, 2012, 1193.

[44]

SheaMK, HoldenRM. Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr, 2012, 3: 158-165.

[45]

ShiJ, ZhouS, KangL, LingH, ChenJ, DuanL, SongY, DengY. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with Sialic acid-cholesterol conjugate. Drug Deliv Transl Res, 2018, 8: 1-11.

[46]

SinghR, PuriA, PandaBP. Development of menaquinone-7 enriched nutraceutical: inside into medium engineering and process modeling. J Food Sci Technol, 2015, 52: 5212-5219.

[47]

SuberuY, AkandeI, SamuelT, LawalA, OlaniranA. Optimization of protease production in Indigenous Bacillus species isolated from soil samples in lagos, Nigeria using response surface methodology. Biocatal Agric Biotechnol, 2019, 18101011.

[48]

SunT, YanP, ZhanN, ZhangL, ChenZ, ZhangA, ShanA. The optimization of fermentation conditions for Pichia pastoris GS115 producing Recombinant Xylanase. Eng Life Sci, 2020, 20: 216-228.

[49]

SunX, BiX, LiG, CuiS, XuX, LiuY, LiJ, DuG, LvX, LiuL. Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis. Biotechnol Bioeng, 2024, 121: 3338-3350.

[50]

TanJ, JahimJ, WuT, HarunS, MumtazT. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes. IOP Conf Ser Earth Environ Sci, 2016, 36012058.

[51]

TsukamotoY, KasaiM, KakudaH. Construction of a Bacillus subtilis (natto) with high productivity of vitamin K (menaquinone-7) by analog resistance. Biosci Biotechnol Biochem, 2001, 65: 2007-2015.

[52]

van GorpRH, DijkgraafI, BrökerV, BauwensM, LeendersP, JennenD, DweckM, BuceriusJ, BriedéJJ, van RynJ, BrandenburgV, MottaghyF, SpronkHMH, ReutelingspergerCP, SchurgersLJ. Off-target effects of oral anticoagulants – vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant Dabigatran etexilate. J Thromb Haemost, 2021, 19: 1348-1363.

[53]

Vermeer C (2012) Vitamin K: the effect on health beyond coagulation - an overview. Food Nutr Res 56. https://doi.org/10.3402/fnr.v56i0.5329

[54]

VosM, Esposito Giovanni, EdirisingheJN, VilainS, HaddadDM, SlabbaertJR, VanMS, SchaapO, DeSB, MeganathanR, MoraisVA, VerstrekenP. Vitamin K2 is a mitochondrial electron carrier that rescues Pink1 deficiency. Science, 2012, 336: 1306-1310.

[55]

WaltherB, KarlJP, BoothSL, BoyavalP. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr, 2013, 4: 463-473.

[56]

WangH, LiuH, WangL, ZhaoG, TangH, SunX, NiW, YangQ, WangP, ZhengZ. Improvement of menaquinone-7 production by Bacillus subtilis Natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biotechnol, 2019, 103: 7519-7535.

[57]

WuW, AhnBY. Improved menaquinone (vitamin K2) production in Cheonggukjang by optimization of the fermentation conditions. Food Sci Biotechnol, 2011, 20: 1585-1591.

[58]

WuW, AhnBY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7 (Vitamin K2) production by Bacillus subtilis. J Microbiol Biotechnol, 2018, 28: 902-908.

[59]

WuP, et al.. Promoting the growth of rubrivivax gelatinosus in sewage purification by the addition of magnesium ions. Biochem Eng J, 2014, 91: 66-71.

[60]

WuR, ChenG, PanS, ZengJ, LiangZ. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Sci Rep, 2019, 96824.

[61]

XuJ, ZhangW. Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance. J Zhejiang Univ Sci B, 2017, 18: 462-473.

[62]

YangS, KangZ, CaoW, DuG, ChenJ. Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. J Biotechnol, 2016, 219: 40-47.

[63]

YangS, CaoY, SunL, LiC, LinX, CaiZ, ZhangG, SongH. Modular pathway engineering of Bacillus subtilis to promote De Novo biosynthesis of menaquinone-7. ACS Synth Biol, 2019, 8: 70-81.

[64]

ZengW, ChenG, WuY, DongM, ZhangB, LiangZ. Nonsterilized fermentative production of poly-γ-glutamic acid from cassava starch and corn steep powder by a thermophilic Bacillus subtilis. J Chem Technol Biotechnol, 2018, 93: 2917-2924.

[65]

ZhaoF, WangW, ZhangG, ZhangJ, LiuC, XuB. In vitro antibacterial effect of polyglycerol monolaurates against gram-bacteria and Understanding the underlying mechanism. J Oleo Sci, 2021, 70: 571-580.

[66]

ZhouH, ClaphamDE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci U S A, 2009, 106: 15750-15755.

Funding

China National Key Research and Development Program (2019YFA0904300, 2019YFA0904304)

Major Projects of Science and Technology of Anhui Province(202103a06020003)

Anhui Provincial Key Research and Development Plan(1804b06020342)

Natural Science Foundation of Anhui Province (1908085MB48 and 1908085MB43)

National Natural Science Foundation of China(32070088)

RIGHTS & PERMISSIONS

The Author(s)

PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

/