Engineering a modular pectin-to-lipids bioconversion system using two Kluyveromyces marxianus strains

Bofan Yu , He Qiao , Xuye Lang

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1)

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) DOI: 10.1186/s40643-025-00927-z
Research
research-article

Engineering a modular pectin-to-lipids bioconversion system using two Kluyveromyces marxianus strains

Author information +
History +
PDF

Keywords

Kluyveromyces marxianus / Pectin utilization / Lipids production / Modular system / Metabolic engineering

Cite this article

Download citation ▾
Bofan Yu, He Qiao, Xuye Lang. Engineering a modular pectin-to-lipids bioconversion system using two Kluyveromyces marxianus strains. Bioresources and Bioprocessing, 2025, 12(1): DOI:10.1186/s40643-025-00927-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BilalM, JiL, XuY, XuS, LinY, IqbalHMN, ChengH. Bioprospecting Kluyveromyces Marxianus as a robust host for industrial biotechnology. Front Bioeng Biotechnol, 2022, 10851768

[2]

BizA, Sugai-GuériosMH, KuivanenJ, MaaheimoH, KriegerN, MitchellDA, RichardP. The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae. Microb Cell Fact, 2016, 151144

[3]

BonninE, GarnierC, RaletMC. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl Microbiol Biotechnol, 2014, 98(2): 519-532

[4]

BroachJR. Nutritional control of growth and development in yeast. Genetics, 2012, 192(1): 73-105

[5]

Chavan P, Singh AK, Kaur G (2019) Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review. J Food Process Eng

[6]

ChenL, YanW, QianX, ChenM, ZhangX, XinF, ZhangW, JiangM, OchsenreitherK. Increased lipid production in Yarrowia lipolytica from acetate through metabolic engineering and cosubstrate fermentation. ACS Synth Biol, 2021, 10(11): 3129-3138

[7]

da SilvaEG, de Fátima BorgesM, MedinaC, PiccoliRH, SchwanRF. Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res, 2005, 5(9): 859-865

[8]

de KroonAI. Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1771(3): 343-352

[9]

DekkerWJC, Ortiz-MerinoRA, KaljouwA, BattjesJ, WieringFW, MooimanC, TorreP, PronkJT. Engineering the thermotolerant industrial yeast Kluyveromyces Marxianus for anaerobic growth. Metab Eng, 2021, 67: 347-364

[10]

DevaR, CiccoliR, ScheweT, KockJL, NigamS. Arachidonic acid stimulates cell growth and forms a novel oxygenated metabolite in Candida albicans. Biochim Biophys Acta, 2000, 1486(2–3): 299-311

[11]

Erb-DownwardJR, HuffnagleGB. Cryptococcus neoformans produces authentic prostaglandin E2 without a cyclooxygenase. Eukaryot Cell, 2007, 6(2): 346-350

[12]

ErianAM, SauerM. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. Bioresour Technol, 2022, 346126296

[13]

GaoQ, CaoX, HuangYY, YangJL, ChenJ, WeiLJ, HuaQ. Overproduction of fatty acid Ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synth Biol, 2018, 7(5): 1371-1380

[14]

GaoJ, YuW, LiY, JinM, YaoL, ZhouYJ. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat Chem Biol, 2023, 19(12): 1524-1531

[15]

GrohmannK, BaldwinEA, BusligBS. Production of ethanol from enzymatically hydrolyzed orange Peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol, 1994, 45–46: 315-327

[16]

HuisjesEH, LuttikMA, AlmeringMJ, BisschopsMM, DangDH, KleerebezemM, SiezenR, van MarisAJ, PronkJT. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism. J Biotechnol, 2012, 162(2–3): 303-310

[17]

JiaJ, WhealsA. Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces Marxianus. Curr Genet, 2000, 38(5): 264-270

[18]

LazarZ, LiuN, StephanopoulosG. Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol, 2018, 36(11): 1157-1170

[19]

LiM, LangXY, Moran CabreraM, De KeyserS, SunX, Da SilvaN, WheeldonI. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces Marxianus. Biotechnol Biofuels, 2021, 1413

[20]

LiS, SuC, FangM, CaiD, DengL, WangF, LiuJ. Overproduction of palmitoleic acid from corn Stover hydrolysate by engineered Saccharomyces cerevisiae. Bioresour Technol, 2023, 382129211

[21]

LiJ, PengC, MaoA, ZhongM, HuZ. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol, 2024, 254127804

[22]

LiangC, GuiX, ZhouC, XueY, MaY, TangSY. Improving the thermoactivity and thermostability of pectatelyase from Bacillus pumilus for Ramie degumming. Appl Microbiol Biotechnol, 2015, 99(6): 2673-2682

[23]

LiuHH, WangC, LuXY, HuangH, TianY, JiXJ. Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in Yarrowia lipolytica. J Agric Food Chem, 2019, 67(35): 9851-9857

[24]

LöbsAK, LinJL, CookM, WheeldonI. High throughput, colorimetric screening of microbial ester biosynthesis reveals high Ethyl acetate production from Kluyveromyces Marxianus on C5, C6, and C12 carbon sources. Biotechnol J, 2016, 11(10): 1274-1281

[25]

MaX, WangDL, ChenWJ, IsmailBB, WangWJ, LvRL, DingT, YeXQ, LiuDH. Effects of ultrasound pretreatment on the enzymolysis of pectin: kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. Food Hydrocolloids, 2018, 79: 90-99

[26]

MasoudW, JespersenL. Pectin degrading enzymes in yeasts involved in fermentation of Coffea Arabica in East Africa. Int J Food Microbiol, 2006, 110(3): 291-296

[27]

MillerG. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem, 1959, 31: 426-428

[28]

MohnenD. Pectin structure and biosynthesis. Curr Opin Plant Biol, 2008, 11(3): 266-277

[29]

MotterFA, KuivanenJ, KeränenH, HilditchS, PenttiläM, RichardP. Categorisation of sugar acid dehydratases in Aspergillus Niger. Fungal Genet Biol, 2014, 64: 67-72

[30]

MoyoS, GasheBA, CollisonEK, MpuchaneS. Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. Int J Food Microbiol, 2003, 85(1–2): 87-100

[31]

PerpeleaA, WijayaAW, MartinsLC, RippertD, KleinM, AngelovA, PeltonenK, TelekiA, LieblW, RichardP, TheveleinJM, TakorsR, Sá-CorreiaI, NevoigtE. Towards valorization of pectin-rich agro-industrial residues: engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metab Eng, 2022, 69: 1-14

[32]

ProtzkoRJ, LatimerLN, MartinhoZ, de ReusE, SeibertT, BenzJP, DueberJE. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus Peel waste. Nat Commun, 2018, 915059

[33]

SharmaP, VishvakarmaR, GautamK, VimalA, Kumar GaurV, FarooquiA, VarjaniS, YounisK. Valorization of citrus Peel waste for the sustainable production of value-added products. Bioresour Technol, 2022, 351127064

[34]

SieiroC, SesteloAB, VillaTG. Cloning, characterization, and functional analysis of the EPG1-2 gene: a new allele coding for an endopolygalacturonase in Kluyveromyces Marxianus. J Agric Food Chem, 2009, 57(19): 8921-8926

[35]

SieksteleR, BartkeviciuteD, SasnauskasK. Cloning, targeted disruption and heterologous expression of the Kluyveromyces Marxianus endopolygalacturonase gene (EPG1). Yeast, 1999, 15(4): 311-322

[36]

TakagiH. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem, 2019, 83(8): 1449-1462

[37]

ThorwallS, SchwartzC, ChartronJW, WheeldonI. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol, 2020, 16(2): 113-121

[38]

WagnerJM, AlperHS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol, 2016, 89: 126-136

[39]

WangJ, Ledesma-AmaroR, WeiY, JiB, JiXJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A review. Bioresour Technol, 2020, 313123707

[40]

WangK, ShiTQ, WangJ, WeiP, Ledesma-AmaroR, JiXJ. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils. ACS Synth Biol, 2022, 11(4): 1542-1554

[41]

WikandariR, HasniahN, TaherzadehMJ. The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresour Technol, 2022, 345126531

[42]

WilliamsDL, SchückelJ, VivierMA. Grape pomace fermentation and cell wall degradation by Kluyveromyces Marxianus Y885. Bio Eng J, 2019, 150107282

[43]

WuYT, PereiraM, VenâncioA, TeixeiraJ. Recovery of endo-polygalacturonase using polyethylene glycol-salt aqueous two-phase extraction with polymer recycling. Bioseparation, 2000, 9(4): 247-254

[44]

XiangT, YangR, LiL, LinH, KaiG. Research progress and application of pectin: A review. J Food Sci, 2024, 89(11): 6985-7007

[45]

XuS, QinX, LiuB, ZhangDQ, ZhangYH. An acidic pectin lyase from Aspergillus Niger with favourable efficiency in fruit juice clarification. Lett Appl Microbiol, 2015, 60(2): 181-187

[46]

YuanYC, YuBF, ZhouXZ, QiaoH, LianJZ, LangXY, YaoY. Engineering living material for controlled fragrance release utilizing Kluyveromyces Marxianus CBS6556 and adaptive hydrogel. ACS Synth Biol, 2024, 13(10): 3188-3196

[47]

ZhangK, JiangZ, LiX, WangD, HongJ. Enhancing simultaneous saccharification and co-fermentation of corncob by Kluyveromyces Marxianus through overexpression of putative transcription regulator. Bioresour Technol, 2024, 399130627

Funding

Natural Science Foundation of Zhejiang Province(ZCLQ24C0101)

RIGHTS & PERMISSIONS

The Author(s)

PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

/