Harnessing polyphenols from pulp industry residues of juvenile eucalyptus wood: potential for adhesive applications

Lucía Xavier , Rodrigo Coniglio , Fabián Bermúdez , Diego Passarella , Leonardo Clavijo

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1)

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) DOI: 10.1186/s40643-025-00914-4
Research
research-article

Harnessing polyphenols from pulp industry residues of juvenile eucalyptus wood: potential for adhesive applications

Author information +
History +
PDF

Abstract

Approximately 1–2% of the wood processed for pulp production is converted into sawdust and pinchips, which are commonly burned for energy in industries that already produce excess power. This material, juvenile wood only containing sapwood, poses challenges for its valorization. This study explores the extraction of polyphenols from Eucalyptus wood residues generated by a pulp industry in Uruguay, aiming to evaluate their suitability as partial replacements in phenol-formaldehyde (PF) adhesives. Using solid-liquid extraction with sodium hydroxide and sodium sulfite, the extractions conditions were optimized through an experimental design considering sodium hydroxide and sodium sulfite charges, along with temperature as variables. The extracts were characterized based on phenolic content, condensed tannins content, antioxidant activity, and Stiasny number, to assess the adhesive potential. Adhesives formulated with 10%, 20%, and 30% PF resin substitution demonstrated a progressive reduction in tensile shear strength, with the 10% substitution achieving acceptable strength. While higher substitution levels compromised adhesive performance, the results suggest that formulation adjustments may improve performance at moderate substitution ratios. Furthermore, the high antioxidant capacity of the extracts opens up potential for their use in other high-value applications where natural antioxidants are increasingly sought after as safer and more sustainable alternatives to synthetic additives.

Keywords

Eucalyptus / Polyphenols / Adhesives / Valorization / Biorefineries

Cite this article

Download citation ▾
Lucía Xavier, Rodrigo Coniglio, Fabián Bermúdez, Diego Passarella, Leonardo Clavijo. Harnessing polyphenols from pulp industry residues of juvenile eucalyptus wood: potential for adhesive applications. Bioresources and Bioprocessing, 2025, 12(1): DOI:10.1186/s40643-025-00914-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbbasM, SaeedF, AnjumFM, et al.. Natural polyphenols: an overview. Int J Food Prop, 2017, 20: 1689-1699.

[2]

AiresA, CarvalhoR, SaavedraMJ. Valorization of solid wastes from chestnut industry processing: extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Manag, 2016, 48: 457-464.

[3]

BarreiraJCM, FerreiraICFR, OliveiraMBPP, PereiraJA. Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food Chem Toxicol, 2008, 46: 2230-2235.

[4]

Belščak-Cvitanović A, Durgo K, Huđek A et al (2018) Overview of polyphenols and their properties. Polyphenols: properties, recovery, and applications. Elsevier, pp 3–44

[5]

BertelliA, BiagiM, CorsiniM, et al.. Polyphenols: from theory to practice. Foods, 2021, 10112595.

[6]

BöhmR, HauptmannM, PizziA, FriedrichC, LaborieMP. The chemical, kinetic and mechanical characterization of tannin-based adhesives with different crosslinking systems. Int J Adhes Adhes, 2016, 68: 1-8.

[7]

CadahíaE, CondeE, García-VallejoMC, de SimónBF. Gel permeation chromatographic study of the molecular weight distribution of tannins in the wood, bark and leaves of Eucalyptus spp. Chromatographia, 1996, 42: 95-100.

[8]

CamesascaL, de MattosJA, VilaE, et al.. Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate. Biotechnol Rep, 2021, 31e00643.

[9]

CebreirosF, ClavijoL, BoixE, et al.. Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments. Renew Energy, 2020, 149: 115-127.

[10]

CebreirosF, RissoF, CagnoM, et al.. Enhanced production of butanol and xylosaccharides from Eucalyptus grandis wood using steam explosion in a semi-continuous pre-pilot reactor. Fuel, 2021, 290119818.

[11]

ChemetovaC, RibeiroH, FabiãoA, GominhoJ. Towards sustainable valorisation of Acacia melanoxylon biomass: characterization of mature and juvenile plant tissues. Environ Res, 2020, 191110090.

[12]

CherubiniF. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag, 2010, 51: 1412-1421.

[13]

ChupinL, MotillonC, Charrier-El BouhtouryF, et al.. Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind Crops Prod, 2013, 49: 897-903.

[14]

ConiglioR, GaschlerW, DiesteA. Knot extractives responsible for the yellowing of white-coated pine wood. Eur J Wood Wood Product, 2023, 81: 1109-1117.

[15]

DünischO, RichterHG, KochG. Wood properties of juvenile and mature Heartwood in Robinia pseudoacacia L. Wood Sci Technol, 2010, 44: 301-313.

[16]

Dunky M (2021) Wood adhesives based on natural resources: A critical review: III. Tannin-and Lignin-Based adhesives. In: Mittal KL (ed) Progress in adhesion and adhesives, vol 6. Wiley, pp 383–530. https://doi.org/10.1002/9781119846703.ch18

[17]

European Committee for Standardization (CEN)EN 314-2: Plywood - Bonding quality - Part 2: requirements, 1993, Brussels. European Committee for Standardization.

[18]

Faye A, Leung ACW, Guyot-Reeb S et al (2021) Extraction of tannins from yellow birch: enhanced process for water conservation and energy savings. J Clean Prod 299

[19]

Fernández-AgullóA, FreireMS, González-ÁlvarezJ. Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Ind Crops Prod, 2015, 64: 105-113.

[20]

GedaraAKA, ChianellaI, EndrinoJL, ZhangQ. Adhesiveless bonding of wood– A review with a focus on wood welding. BioResources, 2021, 16(3): 6448-6470.

[21]

GhahriS, PizziA, MohebbyB, et al.. Soy-based, tannin-modified plywood adhesives. J Adhes, 2018, 94: 218-237.

[22]

GierlingerN, WimmerR. Radial distribution of Heartwood extractives and lignin in mature European larch. Wood Fiber Sci, 2004, 36: 387-394

[23]

Gnassiri WedaïnaA, PizziA, NzieW, DanweR, Konaï Siham AmirouN, SegoviaC, KuenyR. Performance of unidirectional biocomposite developed with Piptadeniastrum Africanum tannin resin and Urena Lobata fibers as reinforcement. J Renew Mater, 2021, 9(3): 477-493.

[24]

GuigouM, CabreraMN, ViqueM, et al.. Combined pretreatments of eucalyptus sawdust for ethanol production within a biorefinery approach. Biomass Convers Biorefin, 2019, 9: 293-304.

[25]

GuigouM, MoureS, BermúdezF, et al.. Ethanol production from Eucalyptus sawdust following sequential alkaline thermochemical pretreatment with recovery of extractives. Bioenergy Res, 2023, 16: 2012-2021.

[26]

HafizNLM, TahirPMD, HuaLS, et al.. Curing and thermal properties of co-polymerized tannin phenol-formaldehyde resin for bonding wood veneers. J Mater Res Technol, 2020, 9: 6994-7001.

[27]

HamesB, RuizR, ScarlataC, et al.NREL 42620: Preparation of samples for compositional analysis, 2008, Colorado. National Renewable Energy Laboratory.

[28]

HemmiläV, AdamopoulosS, KarlssonO, KumarA. Development of sustainable bio-adhesives for engineered wood panels-A review. RSC Adv, 2017, 7: 38604-38630.

[29]

Hillis WE (1987) Heartwood and tree exudates. Springer-

[30]

Hoyos-martinezP, De, MerleJ, LabidiJ, et al.. Tannins extraction: A key point for their valorization and cleaner production. J Clean Prod, 2019, 206: 1138-1155.

[31]

HuntCG, DunkyM. Analysis of future prospects and opportunities for wood adhesives: A review. For Prod J, 2022, 72(s2): 14-22.

[32]

KasmaniJE, NematiM, SamarihaA, et al.. Studying the effect of the age in Eucalyptus camaldulensis species on wood chemical compounds used in pulping process. J Agric Environ Sci, 2011, 11: 854-856

[33]

KimS, KimHJ. Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J Adhes Sci Technol, 2003, 17: 1369-1383.

[34]

KleinHS, LunaFV. The development of a modern cellulose industry in South America. Lat Am Res Rev, 2022, 57: 753-774.

[35]

KollekH, BrockmannH, Von Der MuellerH. Chemistry of curing and adhesion properties of phenolic resins. Int J Adhes Adhes, 1986, 6(1): 37-41

[36]

KumarV, MalyanSK, ApollonW, VermaP. Valorization of pulp and paper industry waste streams into bioenergy and value-added products: an integrated biorefinery approach. Renewable Energy, 2024, 228120566.

[37]

LanP, FrançoisG, PizziA, et al.. Wood adhesives from agricultural by-products: lignins and tannins for the elaboration of particleboards. Cellul Chem Technol, 2012, 46: 457-462

[38]

LiT, HuZ, LiuZ, LiC. Development and characterization of a novel environmentally friendly Larch-Tannin-Modified Phenol–Formaldehyde resin for plywood manufacturing. Forests, 2024, 15122155.

[39]

Lorenz L, Frihart CR, Wescott JM (2005) Analysis of Soy Flour/Phenol-Formaldehyde Adhesives for Bonding Wood. Wood Adhesives 2005 501–505

[40]

Ma C, Pang H, Shen Y et al (2021) Plant Polyphenol-Inspired crosslinking strategy toward high bonding strength and mildew resistance for soy protein adhesives. Macromol Mater Eng 306. https://doi.org/10.1002/mame.202100543

[41]

ManachC, ScalbertA, MorandC, et al.. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 2004, 79: 727-774

[42]

Matsumae T, Horito M, Kurushima N, Yazaki Y (2019) Development of bark-based adhesives for plywood: utilization of flavonoid compounds from bark and wood. II. J Wood Sci 65. https://doi.org/10.1186/s10086-019-1780-x

[43]

MotaI, Rodrigues PintoPC, NovoC, et al.. Extraction of polyphenolic compounds from Eucalyptus globulus bark: process optimization and screening for biological activity. Ind Eng Chem Res, 2012, 51: 6991-7000.

[44]

MussattoSI, DragoneGMMussattoSI. Chap. 1 - Biomass pretreatment, biorefineries, and potential products for a bioeconomy development. Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery, 2016, Amsterdam. Elsevier. 122

[45]

NorströmE, DemircanD, FogelströmL, et al.. Green binders for wood adhesives. Appl Adhesive Bonding Sci Technol, 2018.

[46]

ÖzbayG, AyrilmisN. Bonding performance of wood bonded with adhesive mixtures composed of phenol-formaldehyde and bio-oil. Ind Crops Prod, 2015, 66: 68-72.

[47]

ParidahMT, MusgraveOC, AshaariZ. Determination of polyphenolic content of bark extracts for wood adhesives. Holzforschung, 2002, 56: 267-272.

[48]

PintoPCR, SousaG, CrispimF, SilvestreAJD, NetoCP. Eucalyptus globulus bark as source of tannin extracts for application in leather industry. ACS Sustainable Chem Eng, 2013, 1(8): 950-955.

[49]

PiwowarskaN, González-AlvarezJ. Extraction of antioxidants from forestry biomass: kinetics and optimization of extraction conditions. Biomass Bioenergy, 2012, 43: 42-51.

[50]

PizziA. Condensed tannins for adhesives. Ind Eng Chem Prod Res Dev, 1982, 21: 359-369

[51]

PizziA. Wood products and green chemistry. Ann for Sci, 2016, 73(1): 185-203.

[52]

PizziA, MittalKLHandbook of adhesive technology, 2003, New York. M. Dekker.

[53]

PizziA, MeiklehamN, StephanouA. Induced accelerated autocondensation of polyflavonoid tannins for phenolic polycondensates. II. Cellulose effect and application. J Appl Polym Sci, 1995, 55(6): 929-933.

[54]

ResquinF, FariñaI, Rachid-CasnatiC, RavaA, DoldánJ, HirigoyenA, InderkumF, AlenS, Morales OlmosV, Carrasco-LetelierL. Impact of rotation length of Eucalyptus globulus labill. On wood production, kraft pulping, and forest value. IForest - Biogeosciences Forestry, 2022, 15(5): 433-443.

[55]

Rochón E, Cabrera MN, Scutari V et al (2022) Co-production of bioethanol and xylosaccharides from steam-exploded eucalyptus sawdust using high solid loads in enzymatic hydrolysis: effect of alkaline impregnation. Ind Crops Prod 175. https://doi.org/10.1016/j.indcrop.2021.114253

[56]

RoffaelE. Significance of wood extractives for wood bonding. Appl Microbiol Biotechnol, 2016, 100: 1589-1596.

[57]

SantosSAO, VillaverdeJJ, FreireCSR, et al.. Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. Grandis×E. urophylla) and E. maidenii bark extracts. Ind Crops Prod, 2012, 39: 120-127.

[58]

SantosJ, AntorrenaG, FreireMS, et al.. Environmentally friendly wood adhesives based on chestnut (Castanea sativa) shell tannins. Eur J Wood Wood Product, 2017, 75: 89-100.

[59]

SantosJ, DelgadoN, FuentesJ, et al.. Exterior grade plywood adhesives based on pine bark polyphenols and hexamine. Ind Crops Prod, 2018, 122: 340-348.

[60]

Saražin J, Schmiedl D, Pizzi A, Šernek M (2020) Bio-based adhesive mixtures. of Pine Tannin and Different Types of Lignins

[61]

SellersTPlywood and adhesive technology. M. Dekker, 1985, New York. CRC.

[62]

ShirmohammadliY, EfhamisisiD, PizziA. Tannins as a sustainable Raw material for green chemistry: A review. Ind Crops Prod, 2018, 126: 316-332

[63]

ShnawaHA, IbraheemIK, ShentaAA. Kinetic study of curing Phenol-Formaldehyde/Tannin-Formaldehyde composite resins. Nat Resour, 2015, 06(10): 503-513.

[64]

Sieniawska E, Baj T (2017) Tannins. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, pp 199–232. https://doi.org/10.1016/B978-0-12-802104-0.00010-X

[65]

SingletonVL, RossiJA. Colorimetry of total phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am J Enol Vitic, 1965, 16: 152-179

[66]

SjöströmE. Extractives. Wood chemistry: fundamentals and applications, second, 1993, San Diego. Academic. 90108

[67]

Sluiter A, Ruiz R, Scarlata C et al (2005) Determination of Extractives in Biomass. In Technical Report NREL/TP-510-42619

[68]

Sluiter A, Hames B, Ruiz R et al (2008) Determination of Ash in Biomass. In Technical Report NREL/TP-510-42622

[69]

Sluiter A, Hames B, Ruiz R et al (2012) Determination of structural carbohydrates and lignin in Biomass. In Technical Report NREL/TP-510-42618

[70]

SunM, WangY, ShiL, KlemešJJ. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew Sustain Energy Rev, 2018, 92: 823-833.

[71]

SzôllôsiR, Szôllôsi VargaI. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biologica Szeged, 2002, 46: 125-127

[72]

TomasiIT, SantosSCR, BoaventuraRAR, BotelhoCMS. Microwave-Assisted extraction of polyphenols from Eucalyptus Bark—A first step for a green production of Tannin-Based coagulants. Water 2023, 2023, 152317.

[73]

Tuck CO, Pérez E, Horváth IT et al (2012) Valorization of Biomass: Deriving More Value from Waste. Science (1979) 337:695–699. https://doi.org/10.1126/science.1217501

[74]

Ugovšek A, Sora M, Kariz M, Sernek M (2010) Bonding of beech wood with an adhesive mixture made of liquefied wood and phenolic resin. In: The 4th Conference onHardwood Research and Utilisation in Europe

[75]

VázquezG, AntorrenaG, GonzálezJ, FreireS. The influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol, 1997, 17: 147-162.

[76]

VázquezG, González-ÁlvarezJ, López-SuevosF, FreireS, AntorrenaG. Curing kinetics of Tannin-Phenol-Formaldehyde adhesives as determined by DSC. J Therm Anal Calorim, 2002, 70: 19-28

[77]

VázquezG, López-SuevosF, González-AlvarezJ, AntorrenaG. Curing process of phenol-urea-formaldehyde-tannin (PUFT) adhesives. Kinetic studies by DSC and DMA. J Therm Anal Calorim, 2005, 82: 143-149

[78]

VázquezG, González-AlvarezJ, SantosJ, et al.. Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crops Prod, 2009, 29: 364-370.

[79]

VázquezG, FreireMS, SantosJ, et al.. Optimisation of polyphenols extraction from chestnut shell by response surface methodology. Waste Biomass Valorization, 2010, 1: 219-225.

[80]

VázquezG, SantosJ, FreireMS, et al.. Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Sci Technol, 2012, 46: 443-457.

[81]

Vieira PereiraA, SantanaGM, GóisMBSant ’ana DMG. Tannins obtained from medicinal plants extracts against pathogens: antimicrobial potential. Formatex, 2015, 1: 228-235

[82]

VitalBR, CássiaA, De, CarneiroO, et al.. Adesivos à base de Taninos Das Cascas de Duas espécies de Eucalipto Para produção de Chapas de Flocos. Revista Árvore, 2004, 28: 571-582

[83]

WescottJM, FrihartCR, TraskaAE. High-soy-containing water-durable adhesives. J Adhes Sci Technol, 2006, 20: 859-873.

[84]

XavierL, CabreraMN. Aqueous two-phase systems applied to the extraction of syringaldehyde and Vanillin from eucalyptus wood residues. Songklanakarin J Sci Technol, 2021, 43: 153-159.

[85]

Xavier L, Barrenengoa M, Dieste A et al (2021) Valorization of Pinus taeda bark: source of phenolic compounds, tannins and fuel. Eur J Wood Wood Product 1–19. https://doi.org/10.1007/s00107-021-01703-4

[86]

Xavier L, Freire MS, González-Álvarez J Biomass conv. Bioref. (2019). Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Convers Biorefinery 9(4):1220. https://doi.org/10.1007/s13399-019-00401-9

[87]

YazakiY, HillisWE. Polyphenolic extractives of Pinus radiata bark. Holzforschung, 1977, 31(1): 20-25.

[88]

YazakiY, HillisWE. Molecular size distribution of Radiata pine bark extracts and its effect on properties. Holzforschung, 1980, 34: 125-130.

[89]

Yazaki Y, Gu R, Lin Y, Chen W, Nguyen NK Analyses of black wattle (Acacia mearnsii) (1993) Tannins — Relationships among the Hide-Powder, the Stiasny and the Ultra-Violet (UV) methods. Holzforschung 47(1):57–61. https://doi.org/10.1515/hfsg.1993.47.1.57

[90]

Zhang H, Xiao Y, Wang T et al (2024) Solvent and low temperature resistant natural polyphenolic adhesives. Polym (Guildf) 299. https://doi.org/10.1016/j.polymer.2024.126929

[91]

ZidanesUL, LorençoMS, da Silva AraujoE, et al.. Substitution of petrochemical compounds for polyphenols of natural origin reinforced with cellulose nanofibrils to formulate adhesives for wood bonding. Environ Sci Pollut Res, 2023, 30: 74426-74440.

[92]

Zobel BJ, Sprague JR (2012) Juvenile wood in forest trees. Springer

Funding

Agencia Nacional de Investigación e Innovación(ANII_FSE_1_2018_1_152998)

RIGHTS & PERMISSIONS

The Author(s)

PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

/