Enhanced antioxidant activity of brown seaweed Laminaria japonica by fermentation using isolated Bacillus subtilis

Yueh-Hao Ronny Hung , Ya-Han Chang , Hsuan-Ju Lin , Li-Ho Chiang , Hong-Ting Victor Lin

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 69

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 69 DOI: 10.1186/s40643-025-00912-6
Research

Enhanced antioxidant activity of brown seaweed Laminaria japonica by fermentation using isolated Bacillus subtilis

Author information +
History +
PDF

Keywords

Laminaria japonica / Bacillus subtilis / Fermentation / Antioxidant / Polysaccharide / Phenolic compounds

Cite this article

Download citation ▾
Yueh-Hao Ronny Hung, Ya-Han Chang, Hsuan-Ju Lin, Li-Ho Chiang, Hong-Ting Victor Lin. Enhanced antioxidant activity of brown seaweed Laminaria japonica by fermentation using isolated Bacillus subtilis. Bioresources and Bioprocessing, 2025, 12(1): 69 DOI:10.1186/s40643-025-00912-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adekoya I, Obadina A, Olorunfemi M et al (2019) Occurrence of bacteria and endotoxins in fermented foods and beverages from Nigeria and South Africa. Int J Food Microbiol 305:108251. https://doi.org/10.1016/j.ijfoodmicro.2019.108251

[2]

AleMT, MikkelsenJD, MeyerAS. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs, 2011, 9(10): 2106-2130

[3]

AndjelkovićM, Van CampJ, De MeulenaerB, et al.. Iron-chelation properties of phenolic acids bearing catechol and Galloyl groups. Food Chem, 2006, 98(1): 23-31

[4]

Becker S, Tebben J, Coffinet S et al (2020) Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci 117(12):6599–6607. https://doi.org/10.1073/pnas.1917001117

[5]

ChenX, XingR, YuH, et al.. A new extraction method of fucoidan from the soaked water of brown seaweed (Laminaria japonica). Desalination Water Treat, 2012, 40(1–3): 204-208

[6]

Chiboub O, Ktari L, Sifaoui I et al (2017) In vitro amoebicidal and antioxidant activities of some Tunisian seaweeds. https://doi.org/10.1016/j.exppara.2017.10.012. Exp Parasitol 183:76-80

[7]

ChoML, LeeB-Y, YouS. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules, 2010, 16(1): 291-297

[8]

CostaL, FidelisG, CordeiroSL, et al.. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother, 2010, 64(1): 21-28

[9]

DabbaghF, NegahdaripourM, BerenjianA, et al.. Nattokinase: production and application. Appl Microbiol Biotechnol, 2014

[10]

DuboisM, GillesKA, HamiltonJK, et al.. Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28(3): 350-356

[11]

EomS-H, KangY-M, ParkJ-H, et al.. Enhancement of polyphenol content and antioxidant activity of brown Alga Eisenia bicyclis extract by microbial fermentation. Fish Aquat Sci, 2011, 14(3): 192-197

[12]

FarvinKS, JacobsenC. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish Coast. Food Chem, 2013, 138(2–3): 1670-1681

[13]

FotiMC. Use and abuse of the DPPH• radical. J Agric Food Chem, 2015, 63(40): 8765-8776

[14]

GaoJ, LinL, SunB, et al.. A comparison study on polysaccharides extracted from Laminaria Japonica using different methods: structural characterization and bile acid-binding capacity. Food Funct, 2017, 8(9): 3043-3052

[15]

Gulcinİ, AlwaselSH. DPPH radical scavenging assay. Processes, 2023, 11(8): 2248

[16]

Guo X, Chen D-D, Peng K-S et al (2016) Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol 5274–5284. https://doi.org/10.1016/j.fsi.2016.03.017

[17]

Hentati F, Delattre C, Ursu AV et al (2018) Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr Polym 198:589–600. https://doi.org/10.1016/j.carbpol.2018.06.098

[18]

HoldtSL, KraanS. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol, 2011, 23(3): 543-597

[19]

HuT, LiuD, ChenY, et al.. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol, 2010, 46(2): 193-198

[20]

HungY-HR, PengC-Y, HuangM-Y, et al.. Monitoring the aroma compound profiles in the microbial fermentation of seaweeds and their effects on sensory perception. Fermentation, 2023, 9(2): 135

[21]

HurSJ, LeeSY, KimY-C, et al.. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem, 2014

[22]

HwangP-A, LinH-TV, LinH-Y, et al.. Dietary supplementation with low-molecular-weight fucoidan enhances innate and adaptive immune responses and protects against Mycoplasma pneumoniae antigen stimulation. Mar Drugs, 2019, 17(3): 175

[23]

KoJH, YanJP, ZhuL, et al.. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol, 2004, 137(1): 65-74

[24]

KudaT, TsunekawaM, GotoH, et al.. Antioxidant properties of four edible algae harvested in the Noto peninsula, Japan. J Food Compos Anal, 2005, 18(7): 625-633

[25]

LiY-X, WijesekaraI, LiY, et al.. Phlorotannins as bioactive agents from brown algae. Process Biochem, 2011, 46(12): 2219-2224

[26]

LiH-Y, YiY-L, GuoS, et al.. Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: A review. Food Chem 370131010, 2022

[27]

Lin H-TV, Lu W-J, Tsai G-J et al (2016) Enhanced anti-inflammatory activity of brown seaweed Laminaria Japonica by fermentation using Bacillus subtilis. Process Biochem 51(12):1945–1953. https://doi.org/10.1016/j.procbio.2016.08.024

[28]

Lin H-TV, Hsu P-H, Xie Z-M et al (2024) Bacillus subtilis-fermented brown seaweed Laminaria Japonica inhibits foam cell formation via CD36-dependent signaling pathway. J Funct Foods 115:106122. https://doi.org/10.1016/j.jff.2024.106122

[29]

Liu M, Liu Y, Cao M-J et al (2017) Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria Japonica. Carbohydr Polym 172:294–305. https://doi.org/10.1016/j.carbpol.2017.05.060

[30]

Lu W-J, Lin H-J, Hsu P-H et al (2019) Brown and red seaweeds serve as potential efflux pump inhibitors for drug-resistant Escherichia coli. Evid-based Complement Altern Med 2019:1836982. https://doi.org/10.1155/2019/1836982

[31]

Lu W-J, Hsu P-H, Chang C-J et al (2021) Identified seaweed compound diphenylmethane serves as an efflux pump inhibitor in drug-resistant Escherichia coli. Antibiotics 10(11):1378. https://doi.org/10.3390/antibiotics10111378

[32]

LuanF, ZouJ, RaoZ, et al.. Polysaccharides from Laminaria japonica: an insight into the current research on structural features and biological properties. Food Funct, 2021, 12(10): 4254-4283

[33]

MillerGL. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 426-428

[34]

NenadisN, WangL-F, TsimidouM, et al.. Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J Agric Food Chem, 2004, 52(15): 4669-4674

[35]

Norakma M, Zaibunnisa A, Razarinah WW (2022) The changes of phenolics profiles, amino acids and volatile compounds of fermented seaweed extracts obtained through microbial fermentation. Mater Today Proc 488:15–21. https://doi.org/10.1016/j.matpr.2021.02.366

[36]

OktayM, Gülçinİ, KüfrevioğluÖİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci Technol, 2003, 36(2): 263-271

[37]

Pradhan B, Bhuyan PP, Patra S et al (2022) Beneficial effects of seaweeds and seaweed-derived bioactive compounds: current evidence and future prospective. Biocatal Agric Biotechnol 39:102242. https://doi.org/10.1016/j.bcab.2021.102242

[38]

Qi X, Liu H, Ren Y et al (2023) Effects of combined binding of chlorogenic acid/caffeic acid and Gallic acid to trypsin on their synergistic antioxidant activity, enzyme activity and stability. Food Chem X 18:100664. https://doi.org/10.1016/j.fochx.2023.100664

[39]

Rafiquzzaman S, Kong I-S, Kim J-M (2015) Enhancement of antioxidant activity, total phenolic and flavonoid content of Saccharina Japonica by submerged fermentation with Aspergillus oryzae. KSBB J 30(1):27–32. https://doi.org/10.7841/ksbbj.2015.30.1.27

[40]

ReR, PellegriniN, ProteggenteA, et al.. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999, 26(9–10): 1231-1237

[41]

ReboleiraJ, SilvaS, ChatzifragkouA, et al.. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Tech, 2021

[42]

Rioux L-E, Turgeon SL (2015) Chap. 7 - Seaweed carbohydrates, in: Tiwari B K, Troy D J (Eds.), Seaweed Sustainability, Elsevier, pp. 141–192

[43]

Rocha de Souza MC, Marques CT, Guerra Dore CM et al (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19(2):153–160.

[44]

SadhPK, KumarS, ChawlaP, et al.. Fermentation: a Boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules, 2018, 23(10): 2560

[45]

SenevirathneM, KimS-H, SiriwardhanaN, et al.. Antioxidant potential of Ecklonia Cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation Inhibition. Food Sci Technol Int, 2006, 12(1): 27-38

[46]

ShobharaniP, HalamiP, SachindraN. Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties. J Appl Microbiol, 2013, 114(1): 96-107

[47]

Sun Y, Hou S, Song S et al (2018) Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria Japonica polysaccharides. Int J Biol Macromol 112:985–995. https://doi.org/10.1016/j.ijbiomac.2018.02.066

[48]

Sun C, Zhou J, Duan G et al (2020) Hydrolyzing Laminaria Japonica with a combination of microbial alginate lyase and cellulase. Bioresour Technol 311:123548. https://doi.org/10.1016/j.biortech.2020.123548

[49]

TerhoTT, HartialaK. Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem, 1971, 41(2): 471-476

[50]

TsiapaliE, WhaleyS, KalbfleischJ, et al.. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic Biol Med, 2001, 30(4): 393-402

[51]

Vilar EG, O’Sullivan MG, Kerry JP et al (2020) Volatile compounds of six species of edible seaweed: A review. Algal Res 45:101740. https://doi.org/10.1016/j.algal.2019.101740

[52]

Wang J, Zhang Q, Zhang Z et al (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria Japonica. Int J Biol Macromol 42(2):127–132. https://doi.org/10.1016/j.ijbiomac.2007.10.003

[53]

Wang J, Zhang Q, Zhang Z et al (2010a) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria Japonica. Int J Biol Macromol 46(1):6–12. https://doi.org/10.1016/j.ijbiomac.2009.10.015

[54]

Wang T, Jónsdóttir R, Kristinsson HG et al (2010b) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci Technol 43(9):1387–1393. https://doi.org/10.1016/j.lwt.2010.05.010

[55]

Wang M, Chen L, Zhang Z et al (2017) Screening of alginate lyase-excreting microorganisms from the surface of brown algae AMB Express 71 - 9. https://doi.org/10.1186/s13568-017-0361-x.

[56]

Wang Z, Gao T, He Z et al (2022) Reduction of off-flavor volatile compounds in Okara by fermentation with four edible fungi. LWT 155:112941. https://doi.org/10.1016/j.lwt.2021.112941

[57]

WangY, LiuY, HuangX, et al.. A review on mechanistic overview on the formation of toxic substances during the traditional fermented food processing. Food Reviews Int, 2023, 39(3): 1275-1292

[58]

WijesingheW, JeonY-J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr Polym, 2012, 88(1): 13-20

[59]

WijesingheW, JeonY-J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia, 2012, 83(1): 6-12

[60]

Wijesinghe W, Won-Woo L, Young-Mog K et al (2012) Value-added fermentation of Ecklonia Cava processing by-product and its antioxidant effect. J Appl Phycol 24:201–209. https://doi.org/10.1007/s10811-011-9668-1

[61]

YenG-C, DuhP-D, ChuangD-Y. Antioxidant activity of anthraquinones and anthrone. Food Chem, 2000, 70(4): 437-441

[62]

Yin D, Sun X, Li N et al (2021) Structural properties and antioxidant activity of polysaccharides extracted from Laminaria Japonica using various methods. Process Biochem 111:201–209. https://doi.org/10.1016/j.procbio.2021.10.019

[63]

YuanY, MacquarrieD. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym, 2015

[64]

ZhaoY-S, EweysAS, ZhangJ-Y, et al.. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants, 2021, 10(12): 2004

Funding

Office of Elementary and Secondary Education(TIARF106A004)

Center of Excellence for the Oceans, National Taiwan Ocean University(NTOU-RD-AA-2021-1-02018)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/