Using of transporter proteins to improve the uptake efficiency of hydrophobic compounds by Escherichia coli: a coordinated synthesis of START protein and P450scc system proteins to enhance cholesterol biotransformation

Sofia V. Zamalutdinova , Ludmila V. Isaeva , Yaroslav V. Faletrov , Nikolay N. Eroshchenko , Alexey N. Kirushin , Vadim N. Tashlitsky , Mikhail A. Rubtsov , Ludmila A. Novikova

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1)

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) DOI: 10.1186/s40643-025-00909-1
Research
research-article

Using of transporter proteins to improve the uptake efficiency of hydrophobic compounds by Escherichia coli: a coordinated synthesis of START protein and P450scc system proteins to enhance cholesterol biotransformation

Author information +
History +
PDF

Abstract

Synthesis of steroid drugs is possible through biotechnological methods, however, the low efficiency of transporting steroid substrates across microbial membranes is the challenge in using microorganisms for their production. STARD1 and STARD3 proteins (members of the START domain family) work in some mammalian cells in conjunction with the steroidogenic P450scc enzyme system (cytochrome P450scc, adrenodoxin reductase, and adrenodoxin), transporting cholesterol to the mitochondria, where cytochrome P450scc converts it into pregnenolone. In this study, we investigated the effect of STARD1 and STARD3 on P450scc efficiency in E. coli expression models. The combination of the STARD3(216–444) or STARD1(53–285) protein bearing an N-terminal periplasm-targeting sequence, with the P450scc system reconstituted in E. coli, resulted in an increase of pregnenolone synthesis by 3.2- and 1.9-fold, respectively, on a laboratory scale. STARD3(216–444) showed higher levels of expression and a greater effect on the incorporation of sterols into cells and whole-cell biotransformation of cholesterol, compared to STARD1(53–285). This study proposes a fundamentally new approach to optimizing the functioning of the P450scc system in microbial cells, which uses the cholesterol transfer protein to increase the uptake efficiency of a poorly soluble steroid substrate by bacteria. The demand for steroid medications is increasing, and the use of specific carrier proteins could be a useful tool to enhance the efficiency of whole-cell biosynthesis of various steroid compounds.

Cite this article

Download citation ▾
Sofia V. Zamalutdinova, Ludmila V. Isaeva, Yaroslav V. Faletrov, Nikolay N. Eroshchenko, Alexey N. Kirushin, Vadim N. Tashlitsky, Mikhail A. Rubtsov, Ludmila A. Novikova. Using of transporter proteins to improve the uptake efficiency of hydrophobic compounds by Escherichia coli: a coordinated synthesis of START protein and P450scc system proteins to enhance cholesterol biotransformation. Bioresources and Bioprocessing, 2025, 12(1): DOI:10.1186/s40643-025-00909-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ArakaneF, SugawaraT, NishinoH, LiuZ, HoltJA, PainD, StoccoDM, MillerWL, StraussJFIII. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of star action. Proc Natl Acad Sci, 1996, 93(24): 13731-13736.

[2]

BertelmannC, MockM, KochR, SchmidA, BühlerB. Hydrophobic outer membrane pores boost testosterone hydroxylation by cytochrome P450 monooxygenase BM3 containing cells. Front Catal, 2022, 2887458.

[3]

BraunA, GeierM, BühlerB, SchmidA, MauersbergerS, GliederA. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb Cell Fact, 2012, 11106.

[4]

BureikM, BernhardtRSchmidRD, UrlacherVB. Steroid hydroxylation: microbial steroid biotransformations using cytochrome P450 enzymes. Modern biooxidation. Enzymes, reactions and applications, 2007, Weinheim. WILEY-VCH Verlag GmbH & Co. KGaA. 155176

[5]

ChenB, LingH, ChangMW. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels, 2013, 6: 1-10.

[6]

ClarkBJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol, 2012, 212(3): 257-275.

[7]

DonovaMV. Current trends and perspectives in microbial bioconversions of steroids. Methods Mol Biol, 2023, 2704: 3-21.

[8]

DonovaMV, EgorovaOV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol, 2012, 94: 1423-1447.

[9]

EfimovaV, FaletrovY, IsaevaL, NovikovaL, RubtsovM, ShkumatovV. Interaction of NBD-labelled fluorescent steroids and a fatty acid with Escherichia coli. FEBS J, 2015, 282S1135.

[10]

EfimovaVS, IsaevaLV, MakeevaDS, RubtsovMA, NovikovaLA. Expression of cholesterol hydroxylase/lyase system proteins in yeast S. cerevisiae cells as a self-processing polyprotein. Mol Biotechnol, 2017, 59(9–10): 394-406.

[11]

EfimovaVS, IsaevaLV, LabudinaAA, TashlitskyVN, RubtsovMA, NovikovaLA. Polycistronic expression of the mitochondrial steroidogenic P450scc system in the HEK293T cell line. J Cell Biochem, 2019, 120(3): 3124-3136.

[12]

EfimovaVS, IsaevaLV, RubtsovMA, NovikovaLA. Analysis of in vivo activity of the bovine cholesterol hydroxylase/lyase system proteins expressed in Escherichia coli. Mol Biotechnol, 2019, 61: 261-273.

[13]

ElustondoP, MartinLA, KartenB. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(1): 90-101.

[14]

FaletrovY, BrzostekA, PlocinskaR, DziadekJ, RudayaE, EdimechevaI, ShkumatovV. Uptake and metabolism of fluorescent steroids by mycobacterial cells. Steroids, 2017, 117: 29-37.

[15]

FernandesP, CruzA, AngelovaB, PinheiroHM, CabralJMS. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol, 2003, 32(6): 688-705.

[16]

GerberA, KleserM, BiedendieckR, BernhardtR, HannemannF. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in Recombinant Bacillus megaterium. Microb Cell Fact, 2015, 14: 1-13.

[17]

GirvanHM, MunroAW. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr Opin Chem Biol, 2016, 31: 136-145.

[18]

HanlonSP, FriedbergT, WolfCR, ChisalbaO, KittelmannMSchmidRD, UrlacherVB. Recombinant yeast and bacteria that express human P450s: bioreactors for drug discovery, development, and biotechnology. Modern biooxidation: enzymes, reactions and applications, 2007, Weinheim. Wiley-VCH. 233252.

[19]

HorvathMP, GeorgeEW, TranQT, BaumgardnerK, ZharovG, LeeS, SharifzadehH, ShihabS, MattinsonT, LiB, BernsteinPS. Structure of the lutein-binding domain of human StARD3 at 1.74 Å resolution and model of a complex with lutein. Acta Crystallogr F Struct Biol Commun, 2016, 72(8): 609-618.

[20]

HuMC, ChungBC. Expression of human 21-hydroxylase (P450c21) in bacterial and mammalian cells: A system to characterize normal and mutant enzymes. Mol Endocrinol, 1990, 4: 893-898.

[21]

KarpovM, StrizhovN, NovikovaL, LobastovaT, KhomutovS, ShutovA, KazantsevA, DonovaM. Pregnenolone and progesterone production from natural sterols using Recombinant strain of Mycolicibacterium smegmatis mc2 155 expressing mammalian steroidogenesis system. Microb Cell Fact, 2024, 231105.

[22]

KolarNW, SwartAC, MasonJI, SwartP. Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris. J Biotechnol, 2007, 129(4): 635-644.

[23]

LaemmliUK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.

[24]

LarsenMC, LeeJ, JorgensenJS, JefcoateCR. STARD1 functions in mitochondrial cholesterol metabolism and nascent HDL formation. Front Endocrinol, 2020, 11559674.

[25]

LiZ, JiangY, GuengerichFP, MaL, LiS, ZhangW. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem, 2020, 295(3): 833-849.

[26]

LinD, SugawaraT, StraussJF, ClarkBJ, StoccoDM, SaengerP, RogolA, MillerWL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science, 1995, 267(5205): 1828-1831.

[27]

LiuWH, HorngWC, TsaiMS. Bioconversion of cholesterol to cholest-4-en-3-one in aqueous/organic solvent two-phase reactors. Enzyme Microb Technol, 1996, 18: 184-189.

[28]

LowryOH, RosebroughNJ, FarrAL, RandallRJ. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951, 193: 265-270

[29]

MauersbergerS, NovikovaLA, ShkumatovVMBarthG. Cytochrome P450 expression in Yarrowia lipolytica and its use in steroid biotransformation. Yarrowia lipolytica, 2013, Berlin, Heidelberg. Springer. 171226. 25

[30]

MohnWW, van der GeizeR, StewartGR, OkamotoS, LiuJ, DijkhuizenL, EltisLD. The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem, 2008, 283(51): 35368-35374.

[31]

Moog-LutzC, TomasettoC, RégnierCH, WendlingC, LutzY, MullerD, ChenardMP, BassetP, RioMC. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer, 1997, 71(2): 183-191.

[32]

NebertDW, WikvallK, MillerWL. Human cytochromes P450 in health and disease. Philos Trans R Soc B Biol Sci, 2013, 368161220120431.

[33]

NelsonDR, KamatakiT, WaxmanDJ, GuengerichFP, EstabrookRW, FeyereisenR, GonzalezFJ, CoonMJ, GunsalusIC, GotohO, OkudaK, NebertDW. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol, 1993, 12(1): 1-51.

[34]

NovikovaLA, FaletrovYV, KovalevaIE, MauersbergerS, LuzikovVN, ShkumatovVM. From structure and functions of steroidogenic enzymes to new technologies of gene engineering. Biochem (Moscow), 2009, 74: 1482-1504.

[35]

PomponD, LiuRY, BesmanMJ, WangPL, ShivelyJE, ChenS. Expression of human placental aromatase in Saccharomyces cerevisiae. Mol Endocrinol, 1989, 3(9): 1477-1487.

[36]

PontingCP, AravindL. START: a lipid-binding domain in star, HD-ZIP and signalling proteins. Trends Biochem Sci, 1999, 24(4): 130-132.

[37]

R Core Team (2021) R: A Language and environment for statistical computing. R Foundation for Statistical Computing

[38]

ReitzJ, Gehrig-BurgerK, StraussJFIII, GimplG. Cholesterol interaction with the related steroidogenic acute regulatory lipid-transfer (START) domains of star (STARD1) and MLN64 (STARD3). FEBS J, 2008, 275(8): 1790-1802.

[39]

SakakiT, ShibataM, YabusakiY, MurakamiH, OhkawaH. Expression of bovine cytochrome P450c17 cDNA in Saccharomyces cerevisiae. DNA, 1989, 8(6): 409-418.

[40]

Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.

[41]

ShiH, Wen SuW. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb Technol, 2001, 28(1): 25-34.

[42]

Slijkhuis H, Selten GCM, Smaal EB (1989) Process for the biochemical oxidation of steroids and genetically engineered cells used therefor. Patent EP0340878

[43]

SluchankoNN, TugaevaKV, FaletrovYV, LevitskyDI. High-yield soluble expression, purification and characterization of human steroidogenic acute regulatory protein (StAR) fused to a cleavable Maltose-Binding protein (MBP). Protein Expr Purif, 2016, 119: 27-35.

[44]

StudierFW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif, 2005, 41(1): 207-234.

[45]

SzczebaraFM, ChandelierC, VilleretC, MasurelA, BourotS, DuportC, BlanchardS, GroisillierA, TestetE, CostaglioliP, CauetG, DegryseE, BalbuenaD, WinterJ, AchstetterT, SpagnoliR, PomponD, DumasB. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol, 2003, 21: 143-149.

[46]

ThevenieauF, Le DallMT, NthangeniB, MauersbergerS, MarchalR, NicaudJM. Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol, 2007, 44(6): 531-542.

[47]

Thevenieau F, Beopoulos F, Desfougeres T, Sabirova J, Albertin K, Zinjarde S, Nicaud JM (2010) Handbook of hydrocarbon and lipid microbiology. In: Timmis K (ed), pp 1513–1527

[48]

TongWY, DongX. Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol, 2009, 3(2): 141-153.

[49]

TowbinH, StaehelinT, GordonJ. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci, 1979, 76: 4350-4354.

[50]

TugaevaKV, FaletrovYV, AllakhverdievES, ShkumatovVM, MaksimovEG, SluchankoNN. Effect of the NBD-group position on interaction of fluorescently-labeled cholesterol analogues with human steroidogenic acute regulatory protein STARD1. Biochem Biophys Res Commun, 2018, 497(1): 58-64.

[51]

TugaevaKV, TitteringtonJ, SotnikovDV, MaksimovEG, AntsonAA, SluchankoNN. Molecular basis for the recognition of steroidogenic acute regulatory protein by the 14-3‐3 protein family. FEBS J, 2020, 287(18): 3944-3966.

[52]

UrlacherVB, GirhardM. Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends Biotechnol, 2019, 37: 882-897.

[53]

ValléeM. Neurosteroids and potential therapeutics: focus on pregnenolone. J Steroid Biochem Mol Biol, 2016, 160: 78-87.

[54]

VoilquinL, LodiM, Di MattiaT, ChenardMP, MathelinC, AlpyF, TomasettoC. STARD3: A Swiss army knife for intracellular cholesterol transport. SAGE, 2019, 2: 1-15.

[55]

WaldoGS, StandishBM, BerendzenJ, TerwilligerTC. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol, 1999, 17(7): 691-695.

[56]

WatariH, ArakaneF, Moog-LutzC, KallenCB, TomasettoC, GertonGL, RioMC, BakerME, StraussJFIII. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci, 1997, 94(16): 8462-8467.

[57]

WilhelmLP, WendlingC, VédieB, KobayashiT, ChenardMP, TomasettoC, DrinG, AlpyF. STARD3 mediates Endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J, 2017, 36(10): 1412-1433.

[58]

Wu CF, Cha HJ, Rao G, Valdes JJ, Bentley WE (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl Microbiol Biotechnol.;54(1):78–83. https://doi.org/10.1007/s002539900286. PMID: 10952008

[59]

YañezMJ, LeivaA. Human placental intracellular cholesterol transport: A focus on lysosomal and mitochondrial dysfunction and oxidative stress. Antioxidants, 2022, 113500.

[60]

ZamalutdinovaSV, IsaevaLV, ZamalutdinovAV, FaletrovYV, RubtsovMA, NovikovaLA. Analysis of activity of human steroidogenic acute regulatory protein (STARD1) expressed in Escherichia coli cells. Biochem (Moscow), 2022, 87(9): 1015-1020.

[61]

ZehentgruberD, DrăganCA, BureikM, LützS. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of Recombinant Schizosaccharomyces Pombe. J Biotechnol, 2010, 146(4): 179-185.

[62]

ZhangR, ZhangY, WangY, YaoM, ZhangJ, LiuH, ZhouX, XiaoW, YuanY. Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system. ACS Synth Biol, 2019, 8: 2666-2678.

Funding

Russian Foundation for Fundamental Investigations(20-08-00467A)

RIGHTS & PERMISSIONS

The Author(s)

PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

/