Current breakthroughs and advances in atmospheric room temperature plasma (ARTP) technology for biomanufacturing
Yu-Hsiu Li , Jiun-Jang Juo , I-Son Ng
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 63
Current breakthroughs and advances in atmospheric room temperature plasma (ARTP) technology for biomanufacturing
Atmospheric and Room Temperature Plasma (ARTP) mutagenesis has emerged as a novel and powerful physical mutation technology for microbial strain improvement recently. ARTP operates at atmospheric pressure and room temperature using a helium plasma jet, inducing widespread genomic mutations through reactive species and DNA damage. Compared to traditional mutagenesis methods, ARTP is safer, more efficient, and capable of producing high mutation rates without genetic modification, making it a valuable and sophisticated tool in biomanufacturing. This review outlines the principles and diverse applications of ARTP technology for enhancing enzyme activity, metabolite yields, and stress tolerance across various organisms. It also provides a comprehensive discussion of underlying biological mechanisms, workflow, optimization parameters, and potential cellular instability associated with ARTP-induced mutagenesis. Finally, current breakthroughs and future perspectives of ARTP mutagenesis are addressed, emphasizing its role in advancing next-generation microbial platforms for industrial biotechnology and environmental sustainability.
Biomanufacturing / Atmospheric room temperature plasma / Yeast / Microalgae / High-value chemical
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
Wu Y, Xing X, Zhang C, Li H, Wang L (2017) ARTP生物育种技术与装备研发及其产业化发展. 生物产业技术 37–45. |
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
The Author(s)
/
| 〈 |
|
〉 |