Blasting extrusion pretreatment of sweet sorghum bagasse for enhanced enzymatic saccharification and ethanol production using Pichia kudriavzevii ATCC 20,381

Benjamín Vázquez-Rodríguez , Erick Heredia-Olea , Adriana Alamilla-Morales , Esther Pérez-Carrillo , David A. Perez-Perez , Sergio O. Serna-Saldívar

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 65

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 65 DOI: 10.1186/s40643-025-00905-5
Research

Blasting extrusion pretreatment of sweet sorghum bagasse for enhanced enzymatic saccharification and ethanol production using Pichia kudriavzevii ATCC 20,381

Author information +
History +
PDF

Cite this article

Download citation ▾
Benjamín Vázquez-Rodríguez, Erick Heredia-Olea, Adriana Alamilla-Morales, Esther Pérez-Carrillo, David A. Perez-Perez, Sergio O. Serna-Saldívar. Blasting extrusion pretreatment of sweet sorghum bagasse for enhanced enzymatic saccharification and ethanol production using Pichia kudriavzevii ATCC 20,381. Bioresources and Bioprocessing, 2025, 12(1): 65 DOI:10.1186/s40643-025-00905-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvaro HM, Moura J, Rodrigues EAB, Kleingesinds D, Rodrigues EK, R.C.L.B (2022) A residue-free and effective corncob extrusion pretreatment for the enhancement of high solids loading enzymatic hydrolysis to produce sugars. Ind Crops Prod 188. https://doi.org/10.1016/j.indcrop.2022.115655

[2]

Astuti RI, Nurhayati N, Ukit, Alifiyanti S, Sunarti TC, Meryandini A (2018) Exogenous L-proline Increases Stress Tolerance of Yeast Pichia kudriavzevii Against Inhibitors in Lignocellulose Hydrolysates and Enhances its Ethanol Production, in: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/197/1/012052

[3]

BakariH, DjomdiF, RubenZ, RogerDD, CedricD, GuillaumeP, PascalD, PhilippeM, GwendolineC. Optimization of bioethanol production after enzymatic treatment of sweet Sorghum stalks. Waste Biomass Valorization, 2023, 14: 2531-2545

[4]

Cao X, Zuo S, Cai R, Yang F, Jiang X, Xu C (2023) Expansion combined with Irpex lacteus fungal treatment for enhancing buckwheat straw degradation. Biochem Eng J 197. https://doi.org/10.1016/j.bej.2023.108994

[5]

ChaYL, YangJ, SeoS, Il, AnGH, MoonYH, YouGD, LeeJE, AhnJW, LeeKB. Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale. Fuel, 2016, 164: 322-328

[6]

Chelliah R, Ramakrishnan SR, Prabhu PR, Antony U (2016) Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen Idli batter. Yeast. John Wiley and Sons Ltd, pp 385–401. https://doi.org/10.1002/yea.3181

[7]

Chen S, Wang K, Wang Q (2024) Mannose: a promising player in clinical and biomedical applications. Current Drug Delivery 21(11):1435–1444. https://doi.org/10.2174/0115672018275954231220101637

[8]

ChenY, YeR, YinL, ZhangN. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J Food Eng, 2014, 120: 1-8

[9]

ChoiCH, KimJS, OhKK. Evaluation the efficacy of extrusion pretreatment via enzymatic digestibility and simultaneous saccharification &fermentation with rapeseed straw. Biomass Bioenergy, 2013, 54: 211-218

[10]

ChuY, LiM, JinJ, DongX, XuK, JinL, QiaoY, JiH. Advances in the application of the Non-Conventional yeast Pichia kudriavzevii in food and biotechnology industries. J Fungi, 2023

[11]

Díaz-NavaLE, Montes-GarciaN, DomínguezJM, Aguilar-UscangaMG. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess Biosyst Eng, 2017, 40: 1069-1077

[12]

de AlmeidaLGF, ParrellaRA, da SimeoneC, RibeiroMLF, de SantosPC, da CostaAS, GuimarãesASV, SchaffertAG. Composition and growth of sorghum biomass genotypes for ethanol production. Biomass Bioenergy, 2019, 122: 343-348

[13]

Del LopezCF, RigalM, RigalM, VilaremL, VandenbosscheG. Influence of temperature and soda concentration in a thermo-mechano-chemical pretreatment for bioethanol production from sweet corn co-products. Ind Crops Prod, 2019, 133: 317-324

[14]

DuqueA, ManzanaresP, BallesterosM. Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy, 2017

[15]

FernandesAMO, GarciaNFL, FonsecaGG, LeiteRSR, da PazMF. Evaluation of the fermentative capacity of Saccharomyces cerevisiae CAT-1 and BB9 strains and Pichia kudriavzevii BB2 at simulated industrial conditions. Indian J Microbiol, 2020, 60: 494-504

[16]

GaoA, YanX, XuX, YeR, ChenY. Physicochemical and bioactive properties of soluble dietary fibers from blasting extrusion processing (BEP)-Extruded Carrot residues. Food Bioproc Tech, 2015, 8: 2036-2046

[17]

GuBJ, DhumalGS, WolcottMP, GanjyalGM. Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder. Bioresour Technol, 2019, 275: 266-271

[18]

HellJ, DonaldsonL, MichlmayrH, KralerM, KneifelW, PotthastA, RosenauT, BöhmdorferS. Effect of pretreatment on arabinoxylan distribution in wheat Bran. Carbohydr Polym, 2015, 121: 18-26

[19]

Heredia-OleaE, Pérez-CarrilloE, Serna-SaldívarSO. Effects of different acid hydrolyses on the conversion of sweet sorghum Bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresour Technol, 2012, 119: 216-223

[20]

Heredia-OleaE, Pérez-CarrilloE, Serna-SaldívarSO. Effect of extrusion conditions and hydrolysis with fiber-degrading enzymes on the production of C5 and C6 sugars from brewers’ spent grain for bioethanol production. Biofuel Res J, 2015, 5: 203-208

[21]

Hoppert L, Kölling R, Einfalt D (2022) Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate. Bioresour Technol 364. https://doi.org/10.1016/j.biortech.2022.128079

[22]

Huang M, Huang K, Zhao L, He J, Tian D, Lei Y, Zou J, Shen F (2023) From sweet sorghum to supercapacitor and biogas: A new utilization strategy for an energy crop. Ind Crops Prod 206. https://doi.org/10.1016/j.indcrop.2023.117607

[23]

Jácome NT, Mendoza EM, Hurtado BEP (2024) Characterization of the biodegradation properties of lignocellulosic material by Pichia kudriavzevii isolated from cocoa pod shell (Theobroma cacao). https://doi.org/10.21203/rs.3.rs-4883043/v1

[24]

Johansson L, Nikulin J, Juvonen R, Krogerus K, Magalhães F, Mikkelson A, Nuppunen-Puputti M, Sohlberg E, de Francesco G, Perretti G, Gibson B (2021) Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiol 94. https://doi.org/10.1016/j.fm.2020.103629

[25]

Kahve Hİ (2023) Vitro evaluation of the technological and probiotic potential of Pichia kudriavzevii strains isolated from traditional fermented foods. Curr Microbiol 80. https://doi.org/10.1007/s00284-023-03505-8

[26]

Karimipour-Fard P, Chio C, Brunone A, Marway H, Thompson M, Abdehagh N, Qin W, ChunzhongYang T (2023) Lignocellulosic biomass pretreatment: industrial oriented high-solid twin-screw extrusion method to improve biogas production from forestry biomass resources. Bioresour Technol 130000. https://doi.org/10.1016/j.biortech.2023.130000

[27]

KarunanithyC, MuthukumarappanK. Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass - A response surface analysis. Biosyst Eng, 2011, 109: 37-51

[28]

KodamaS, NakanishiH, ThalagalaTATP, IsonoN, HisamatsuM. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose. J Biosci Bioeng, 2013, 115: 557-561

[29]

Konan D, Koffi E, Ndao A, Peterson EC, Rodrigue D, Adjallé K (2022) An overview of extrusion as a pretreatment method of lignocellulosic biomass. Energies (Basel) 15. https://doi.org/10.3390/en15093002

[30]

Kuster MoroM, Sposina Sobral TeixeiraR, da Silva Sant’AnaA, Duarte FujimotoM, Albuquerque MeloP, Resende SecchiA, Pinto da Silva BonE. Continuous pretreatment of sugarcane biomass using a twin-screw extruder. Ind Crops Prod, 2017, 97: 509-517

[31]

LiH, LongD, PengJ, MingJ, ZhaoG. A novel in-situ enhanced blasting extrusion technique - Extrudate analysis and optimization of processing conditions with Okara. Innovative Food Sci Emerg Technol, 2012, 16: 80-88

[32]

LiJ, ThompsonM, LawtonDJW. Improved chemical reactivity of lignocellulose from high solids content Micro-fibrillation by Twin-screw extrusion. J Polym Environ, 2019, 27: 643-651

[33]

Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, PengL (2014) Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology 167:14–23. https://doi.org/10.1016/j.biortech.2014.04.086

[34]

MachineniL, AnupojuGR. Optimization of biomethane production from sweet sorghum Bagasse using artificial neural networks combined with particle swarm algorithm. Environ Sci Pollut Res, 2023

[35]

Madadi M, Elsayed M, Song G, M Bakr M, Qin Y, Sun F, Abomohra A (2023) Holistic lignocellulosic biorefinery approach for dual production of bioethanol and xylonic acid coupled with efficient dye removal. Renew Sustain Energy Rev 185. https://doi.org/10.1016/j.rser.2023.113605

[36]

MalikK, SharmaP, YangY, ZhangP, ZhangL, XingX, YueJ, SongZ, NanL, YujunS, El-DalatonyMM, SalamaES, LiX. Lignocellulosic biomass for bioethanol: insight into the advanced pretreatment and fermentation approaches. Ind Crops Prod, 2022

[37]

Montiel C, Hernández-Meléndez O, Marques S, Gírio F, Tavares J, Ontañon O, Campos E, Bárzana E (2024) Application of In-House Xylanases as an addition to a commercial cellulase cocktail for the sustainable saccharification of pretreated blue Agave Bagasse used for bioethanol production. Sustain (Switzerland) 16(16). https://doi.org/10.3390/su16166722

[38]

NarisettyV, PrabhuAA, BommareddyRR, CoxR, AgrawalD, MisraA, HaiderMA, BhatnagarA, PandeyA, KumarV. Development of hypertolerant strain of Yarrowia lipolytica accumulating succinic acid using high levels of acetate. ACS Sustain Chem Eng, 2022, 10: 10858-10869

[39]

NdubuisiIA, AmadiCO, NwaguTN, MurataY, OgbonnaJC. Non-conventional yeast strains: unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv, 2023

[40]

Ndubuisi IA, Qin Q, Liao G, Wang B, Moneke AN, Ogbonna JC, Jin C, Fang W (2020) Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnol Biofuels 13. https://doi.org/10.1186/s13068-020-01729-5

[41]

NwezeJE, NdubuisiI, MurataY, OmaeH, OgbonnaJC. Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production. Biofuels, 2021, 12: 961-970

[42]

OberoiHS, BabbarN, SandhuSK, DhaliwalSS, KaurU, ChadhaBS, BhargavVK. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol, 2012, 39: 557-566

[43]

Orozco-Angelino X, Espinosa-Ramírez J, Serna-Saldívar SO (2023) Extrusion as a tool to enhance the nutritional and bioactive potential of cereal and legume by-products. Food Res Int 169. https://doi.org/10.1016/j.foodres.2023.112889

[44]

Poomani MS, Mariappan I, Muthan K, Subramanian V (2023) A thermotolerant yeast from cow’s rumen utilize lignocellulosic biomass from wheat straw for Xylanase production and fermentation to ethanol. Biocatal Agric Biotechnol 50. https://doi.org/10.1016/j.bcab.2023.102741

[45]

Poomani MS, Mariappan I, Muthan K, Subramanian V (2024) Insights of Pichia kudriavzevii SVMS2019 for cellulase production and fermentation into ethanol. Renew Energy 225. https://doi.org/10.1016/j.renene.2024.120296

[46]

Prask H, Fugol M, Dyjakon A, Głąb L, Sowiński J, Whitaker A (2023) The impact of sewage Sludge-Sweet Sorghum blends on the biogas production for energy purposes. Energies (Basel) 16. https://doi.org/10.3390/en16052105

[47]

PuniaP, SinghL. Optimization of alkali pre-treatment of sweet sorghum [Sorghum bicolor (L.) Moench] residue to improve enzymatic hydrolysis for fermentable sugars. Waste Manage Bull, 2024, 2: 131-141

[48]

QiuS, YadavMP, YinL. Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, Bagasse and biomass. Food Chem, 2017, 230: 225-233

[49]

Ray RC, Uppuluri KB, Trilokesh C, Lareo C (2018) Sweet Sorghum for bioethanol production: scope, technology, and economics. Bioethanol production from food crops: sustainable sources, interventions, and challenges. Elsevier, pp 81–100. https://doi.org/10.1016/B978-0-12-813766-6.00005-9

[50]

Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199. https://doi.org/10.1016/j.energy.2020.117457

[51]

RobinsonM, ClearyPW. Effect of geometry and fill level on the transport and mixing behaviour of a co-rotating twin screw extruder. Comput Part Mech, 2019, 6: 227-247

[52]

Roca-mesa H, Sendra S, Mas A, Beltran G, Torija MJ (2020) Nitrogen preferences during alcoholic fermentation of different non-saccharomyces yeasts of oenological interest. Microorganisms 8. https://doi.org/10.3390/microorganisms8020157

[53]

RuytersS, MukherjeeV, VerstrepenKJ, TheveleinJM, WillemsKA, LievensB. Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol, 2015, 42: 39-48

[54]

SandrinR, CaonT, ZibettiAW, de FranciscoA. Effect of extrusion temperature and screw speed on properties of oat and rice flour extrudates. J Sci Food Agric, 2018, 98: 3427-3436

[55]

Schnierda T, Bauer FF, Divol B, van Rensburg E, Görgens JF (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Lett Appl Microbiol 58:478–485. https://doi.org/10.1111/lam.12217

[56]

Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A (2023) Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. In Biotechnology for Biofuels and Bioproducts (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13068-023-02295-2

[57]

Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP)

[58]

SuC, QiL, CaiD, ChenB, ChenH, ZhangC, SiZ, WangZ, LiG, QinP. Integrated ethanol fermentation and acetone-butanol-ethanol fermentation using sweet sorghum Bagasse. Renew Energy, 2020, 162: 1125-1131

[59]

SugiyamaM, BaekSY, TakashimaS, MiyashitaN, IshidaK, MunJ, YeoSH. Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter Nuruk. J Biosci Bioeng, 2018, 126: 682-689

[60]

Umakanth AV, Kumar AA, Vermerris W, Tonapi VA (2018) Sweet sorghum for biofuel industry. Breeding Sorghum for diverse end uses. Elsevier, pp 255–270. https://doi.org/10.1016/B978-0-08-101879-8.00016-4

[61]

Velmurugan B, Narra M, Rudakiya DM, Madamwar D (2019) Sweet sorghum: A potential resource for bioenergy production. Refining biomass residues for sustainable energy and bioproducts: technology, advances, life cycle assessment, and economics. Elsevier, pp 215–242. https://doi.org/10.1016/B978-0-12-818996-2.00010-7

[62]

Wang Z, He X, Yan L, Wang J, Hu X, Sun Q, Zhang H (2020) Enhancing enzymatic hydrolysis of corn Stover by twin-screw extrusion pretreatment. Ind Crops Prod 143. https://doi.org/10.1016/j.indcrop.2019.111960

[63]

Wen H, Chen H, Cai D, Gong P, Zhang T, Wu Z, Gao H, Li Z, Qin P, Tan T (2018) Integrated in situ gas stripping-salting-out process for high-titer acetone-butanol-ethanol production from sweet sorghum Bagasse. Biotechnol Biofuels 11. https://doi.org/10.1186/s13068-018-1137-5

[64]

Xiang S, Ge Y, Zhang Y, Bao X, Su X, Shi L, Xia Y, Han H, Ying J, Lai S, Chen J, Zhu X (2024) L-arabinose exerts probiotic functions by improving gut microbiota and metabolism in vivo and in vitro. J Funct Foods 113. https://doi.org/10.1016/j.jff.2024.106047

[65]

YanX, YeR, ChenY. Blasting extrusion processing: the increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat Bran. Food Chem, 2015, 180: 106-115

[66]

YooJ, AlaviS, VadlaniP, Amanor-BoaduV. Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour Technol, 2011, 102: 7583-7590

[67]

Zhang Y, Li T, Shen Y, Wang L, Zhang H, Qian H, Qi X (2020) Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Ind Crops Prod 149. https://doi.org/10.1016/j.indcrop.2020.112356

[68]

ZhengJ, ChooK, RehmannL. The effects of screw elements on enzymatic digestibility of corncobs after pretreatment in a twin-screw extruder. Biomass Bioenergy, 2015, 74: 224-232

[69]

ZhengJ, ChooK, RehmannL. Xylose removal from lignocellulosic biomass via a twin-screw extruder: the effects of screw configurations and operating conditions. Biomass Bioenergy, 2016, 88: 10-16

[70]

Zhu LX, Wang Gqun, Aihaiti A (2020) Combined Indigenous yeast strains produced local wine from over ripen cabernet sauvignon grape in Xinjiang. World J Microbiol Biotechnol 36. https://doi.org/10.1007/s11274-020-02831-4

[71]

Zörb C, Lewandowski I, Kindervater R, Göttert U, Patzelt D (2018) Biobased resources and value chains. In: Lewandowski I (ed) Bioeconomy: shaping the transition to a sustainable, biobased economy. Springer International Publishing, pp 75–95. https://doi.org/10.1007/978-3-319-68152-8_13

Funding

Consejo Nacional de Ciencia y Tecnología(c09-33363)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/