Blasting extrusion pretreatment of sweet sorghum bagasse for enhanced enzymatic saccharification and ethanol production using Pichia kudriavzevii ATCC 20,381
Benjamín Vázquez-Rodríguez , Erick Heredia-Olea , Adriana Alamilla-Morales , Esther Pérez-Carrillo , David A. Perez-Perez , Sergio O. Serna-Saldívar
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 65
Blasting extrusion pretreatment of sweet sorghum bagasse for enhanced enzymatic saccharification and ethanol production using Pichia kudriavzevii ATCC 20,381
| [1] |
Álvaro HM, Moura J, Rodrigues EAB, Kleingesinds D, Rodrigues EK, R.C.L.B (2022) A residue-free and effective corncob extrusion pretreatment for the enhancement of high solids loading enzymatic hydrolysis to produce sugars. Ind Crops Prod 188. https://doi.org/10.1016/j.indcrop.2022.115655 |
| [2] |
Astuti RI, Nurhayati N, Ukit, Alifiyanti S, Sunarti TC, Meryandini A (2018) Exogenous L-proline Increases Stress Tolerance of Yeast Pichia kudriavzevii Against Inhibitors in Lignocellulose Hydrolysates and Enhances its Ethanol Production, in: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/197/1/012052 |
| [3] |
|
| [4] |
Cao X, Zuo S, Cai R, Yang F, Jiang X, Xu C (2023) Expansion combined with Irpex lacteus fungal treatment for enhancing buckwheat straw degradation. Biochem Eng J 197. https://doi.org/10.1016/j.bej.2023.108994 |
| [5] |
|
| [6] |
Chelliah R, Ramakrishnan SR, Prabhu PR, Antony U (2016) Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen Idli batter. Yeast. John Wiley and Sons Ltd, pp 385–401. https://doi.org/10.1002/yea.3181 |
| [7] |
Chen S, Wang K, Wang Q (2024) Mannose: a promising player in clinical and biomedical applications. Current Drug Delivery 21(11):1435–1444. https://doi.org/10.2174/0115672018275954231220101637 |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Hoppert L, Kölling R, Einfalt D (2022) Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate. Bioresour Technol 364. https://doi.org/10.1016/j.biortech.2022.128079 |
| [22] |
Huang M, Huang K, Zhao L, He J, Tian D, Lei Y, Zou J, Shen F (2023) From sweet sorghum to supercapacitor and biogas: A new utilization strategy for an energy crop. Ind Crops Prod 206. https://doi.org/10.1016/j.indcrop.2023.117607 |
| [23] |
Jácome NT, Mendoza EM, Hurtado BEP (2024) Characterization of the biodegradation properties of lignocellulosic material by Pichia kudriavzevii isolated from cocoa pod shell (Theobroma cacao). https://doi.org/10.21203/rs.3.rs-4883043/v1 |
| [24] |
Johansson L, Nikulin J, Juvonen R, Krogerus K, Magalhães F, Mikkelson A, Nuppunen-Puputti M, Sohlberg E, de Francesco G, Perretti G, Gibson B (2021) Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiol 94. https://doi.org/10.1016/j.fm.2020.103629 |
| [25] |
Kahve Hİ (2023) Vitro evaluation of the technological and probiotic potential of Pichia kudriavzevii strains isolated from traditional fermented foods. Curr Microbiol 80. https://doi.org/10.1007/s00284-023-03505-8 |
| [26] |
Karimipour-Fard P, Chio C, Brunone A, Marway H, Thompson M, Abdehagh N, Qin W, ChunzhongYang T (2023) Lignocellulosic biomass pretreatment: industrial oriented high-solid twin-screw extrusion method to improve biogas production from forestry biomass resources. Bioresour Technol 130000. https://doi.org/10.1016/j.biortech.2023.130000 |
| [27] |
|
| [28] |
|
| [29] |
Konan D, Koffi E, Ndao A, Peterson EC, Rodrigue D, Adjallé K (2022) An overview of extrusion as a pretreatment method of lignocellulosic biomass. Energies (Basel) 15. https://doi.org/10.3390/en15093002 |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, PengL (2014) Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology 167:14–23. https://doi.org/10.1016/j.biortech.2014.04.086 |
| [34] |
|
| [35] |
Madadi M, Elsayed M, Song G, M Bakr M, Qin Y, Sun F, Abomohra A (2023) Holistic lignocellulosic biorefinery approach for dual production of bioethanol and xylonic acid coupled with efficient dye removal. Renew Sustain Energy Rev 185. https://doi.org/10.1016/j.rser.2023.113605 |
| [36] |
|
| [37] |
Montiel C, Hernández-Meléndez O, Marques S, Gírio F, Tavares J, Ontañon O, Campos E, Bárzana E (2024) Application of In-House Xylanases as an addition to a commercial cellulase cocktail for the sustainable saccharification of pretreated blue Agave Bagasse used for bioethanol production. Sustain (Switzerland) 16(16). https://doi.org/10.3390/su16166722 |
| [38] |
|
| [39] |
|
| [40] |
Ndubuisi IA, Qin Q, Liao G, Wang B, Moneke AN, Ogbonna JC, Jin C, Fang W (2020) Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnol Biofuels 13. https://doi.org/10.1186/s13068-020-01729-5 |
| [41] |
|
| [42] |
|
| [43] |
Orozco-Angelino X, Espinosa-Ramírez J, Serna-Saldívar SO (2023) Extrusion as a tool to enhance the nutritional and bioactive potential of cereal and legume by-products. Food Res Int 169. https://doi.org/10.1016/j.foodres.2023.112889 |
| [44] |
Poomani MS, Mariappan I, Muthan K, Subramanian V (2023) A thermotolerant yeast from cow’s rumen utilize lignocellulosic biomass from wheat straw for Xylanase production and fermentation to ethanol. Biocatal Agric Biotechnol 50. https://doi.org/10.1016/j.bcab.2023.102741 |
| [45] |
Poomani MS, Mariappan I, Muthan K, Subramanian V (2024) Insights of Pichia kudriavzevii SVMS2019 for cellulase production and fermentation into ethanol. Renew Energy 225. https://doi.org/10.1016/j.renene.2024.120296 |
| [46] |
Prask H, Fugol M, Dyjakon A, Głąb L, Sowiński J, Whitaker A (2023) The impact of sewage Sludge-Sweet Sorghum blends on the biogas production for energy purposes. Energies (Basel) 16. https://doi.org/10.3390/en16052105 |
| [47] |
|
| [48] |
|
| [49] |
Ray RC, Uppuluri KB, Trilokesh C, Lareo C (2018) Sweet Sorghum for bioethanol production: scope, technology, and economics. Bioethanol production from food crops: sustainable sources, interventions, and challenges. Elsevier, pp 81–100. https://doi.org/10.1016/B978-0-12-813766-6.00005-9 |
| [50] |
Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199. https://doi.org/10.1016/j.energy.2020.117457 |
| [51] |
|
| [52] |
Roca-mesa H, Sendra S, Mas A, Beltran G, Torija MJ (2020) Nitrogen preferences during alcoholic fermentation of different non-saccharomyces yeasts of oenological interest. Microorganisms 8. https://doi.org/10.3390/microorganisms8020157 |
| [53] |
|
| [54] |
|
| [55] |
Schnierda T, Bauer FF, Divol B, van Rensburg E, Görgens JF (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Lett Appl Microbiol 58:478–485. https://doi.org/10.1111/lam.12217 |
| [56] |
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A (2023) Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. In Biotechnology for Biofuels and Bioproducts (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13068-023-02295-2 |
| [57] |
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP) |
| [58] |
|
| [59] |
|
| [60] |
Umakanth AV, Kumar AA, Vermerris W, Tonapi VA (2018) Sweet sorghum for biofuel industry. Breeding Sorghum for diverse end uses. Elsevier, pp 255–270. https://doi.org/10.1016/B978-0-08-101879-8.00016-4 |
| [61] |
Velmurugan B, Narra M, Rudakiya DM, Madamwar D (2019) Sweet sorghum: A potential resource for bioenergy production. Refining biomass residues for sustainable energy and bioproducts: technology, advances, life cycle assessment, and economics. Elsevier, pp 215–242. https://doi.org/10.1016/B978-0-12-818996-2.00010-7 |
| [62] |
Wang Z, He X, Yan L, Wang J, Hu X, Sun Q, Zhang H (2020) Enhancing enzymatic hydrolysis of corn Stover by twin-screw extrusion pretreatment. Ind Crops Prod 143. https://doi.org/10.1016/j.indcrop.2019.111960 |
| [63] |
Wen H, Chen H, Cai D, Gong P, Zhang T, Wu Z, Gao H, Li Z, Qin P, Tan T (2018) Integrated in situ gas stripping-salting-out process for high-titer acetone-butanol-ethanol production from sweet sorghum Bagasse. Biotechnol Biofuels 11. https://doi.org/10.1186/s13068-018-1137-5 |
| [64] |
Xiang S, Ge Y, Zhang Y, Bao X, Su X, Shi L, Xia Y, Han H, Ying J, Lai S, Chen J, Zhu X (2024) L-arabinose exerts probiotic functions by improving gut microbiota and metabolism in vivo and in vitro. J Funct Foods 113. https://doi.org/10.1016/j.jff.2024.106047 |
| [65] |
|
| [66] |
|
| [67] |
Zhang Y, Li T, Shen Y, Wang L, Zhang H, Qian H, Qi X (2020) Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Ind Crops Prod 149. https://doi.org/10.1016/j.indcrop.2020.112356 |
| [68] |
|
| [69] |
|
| [70] |
Zhu LX, Wang Gqun, Aihaiti A (2020) Combined Indigenous yeast strains produced local wine from over ripen cabernet sauvignon grape in Xinjiang. World J Microbiol Biotechnol 36. https://doi.org/10.1007/s11274-020-02831-4 |
| [71] |
Zörb C, Lewandowski I, Kindervater R, Göttert U, Patzelt D (2018) Biobased resources and value chains. In: Lewandowski I (ed) Bioeconomy: shaping the transition to a sustainable, biobased economy. Springer International Publishing, pp 75–95. https://doi.org/10.1007/978-3-319-68152-8_13 |
The Author(s)
/
| 〈 |
|
〉 |