A review on techno-economic assessment of Spirulina for sustainable nutraceutical, medicinal, environmental, and bioenergy applications

Musa Nasiru Musa , Ghazali Musa Jirgi , Zakariyya Uba Zango , Marnawi Nasiru Isah , Muhammad Abdurrazak , Adamu Ahmad Adamu , Ismael A. Wadi , Adekunle Akanni Adeleke , Zaharaddeen N. Garba , Usman Bello , Haruna Adamu , Ahmad Hosseini-Bandegharaei , Dmitry Olegovich Bokov

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 51

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 51 DOI: 10.1186/s40643-025-00888-3
Review

A review on techno-economic assessment of Spirulina for sustainable nutraceutical, medicinal, environmental, and bioenergy applications

Author information +
History +
PDF

Abstract

Global population growth underlies the need to explore alternative materials to address pressing challenges in food security, medicine, energy, and environmental pollution. Spirulina is a nutrient dense cyanobacteria that offers promising solutions to the aforementioned challenges, mainly due to its rich composition of proteins, vitamins, minerals, and bioactive compounds such as β-carotene and phycocyanin. These compounds confer various health benefits, including antioxidant, anticancer, anti-diabetic, antimicrobial, and anti-inflammatory properties, which make Spirulina a valuable dietary and therapeutic supplement. Essential fatty acids and its rapid growth rate also makes Spirulina a potential source of biodiesel for energy related applications. Additionally, Spirulina's high porosity and variable functional groups endow it with remarkable biosorption properties for soil and wastewater remediation applications. The chemical structure and unique properties of Spirulina have been utilized to produce biotemplates for nanomaterials as well as the fabrication of functional composites for various applications. Thus, in this review, we have highlighted the broad potentials of Spirulina in diverse applications, emphasizing its eco-friendliness, economic viability, challenges, and the prospects of its biomass for sustainable, nutraceutical, therapeutic, energy related, and environmental applications.

Graphical Abstract

Keywords

Antioxidant / Biodiesel / Environmental remediation / Nutraceutical / Spirulina

Cite this article

Download citation ▾
Musa Nasiru Musa, Ghazali Musa Jirgi, Zakariyya Uba Zango, Marnawi Nasiru Isah, Muhammad Abdurrazak, Adamu Ahmad Adamu, Ismael A. Wadi, Adekunle Akanni Adeleke, Zaharaddeen N. Garba, Usman Bello, Haruna Adamu, Ahmad Hosseini-Bandegharaei, Dmitry Olegovich Bokov. A review on techno-economic assessment of Spirulina for sustainable nutraceutical, medicinal, environmental, and bioenergy applications. Bioresources and Bioprocessing, 2025, 12(1): 51 DOI:10.1186/s40643-025-00888-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abu-TaweelGM, MohsenG, et al. . Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J Infect Public Health, 2019, 12: 777-782.

[2]

Acién FG, Fernández JM, Molina-Grima E. Economics of microalgae biomass production, in: Biofuels from Algae. Elsevier, 2014, pp. 313–325.

[3]

Acién FG, Molina E, Fernández-Sevilla JM, Barbosa M, Gouveia L, Sepúlveda C, Bazaes J, Arbib Z. Economics of microalgae production, in: Microalgae-Based Biofuels and Bioproducts. Elsevier, 2017, pp. 485–503.

[4]

AdamuH, HarunaA, ZangoZU, GarbaZN, MusaSG, YahayaSM, IbrahimTafidaU, BelloU, DanmallamUN, AkinpeluAA, IbrahimAS, SaboA, Aljunid MericanZM, QamarM. Microplastics and co-pollutants in soil and marine environments: sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. Chemosphere, 2024, 362. 142630

[5]

AdamuUA, BakarNHHA, IqbalA, SambudiNS, ZangoZU. The role of bio-inspired ZnO nanoparticles in the modification of MIL101(Cr) properties for visible light degradation of phenanthrene. Catal Commun, 2024, 187. 106905

[6]

AdeniyiAH, HaliruAK, ZangoZU, AkpambangVOE, NuraAY. Assessment of ambient air quality in Obajana cement industry, Kogi state, Nigeria. Ethiop J Environ Stud Manag., 2022, 15: 630-641

[7]

Afzan, M., Shima, S.M., Uba, Z.Z., 2022. Adsorption of bisphenol a : Characterisation of ZIF–8 , UiO–66 ( Zr ) and MIL–88 ( Fe ) metal–organic frameworks ( MOFs ) Adsorption of Bisphenol A : Characterisation of ZIF–8 , UiO–66 ( Zr ) and MIL–88 ( Fe ) Metal–Organic Frameworks. AIP Conf. Proc. 66.

[8]

AinasM, HasnaouiS, BouarabR, AbdiN, DrouicheN, MameriN. Hydrogen production with the cyanobacterium Spirulina platensis. Int J Hydrogen Energy, 2017, 42: 4902-4907.

[9]

AjilAH, AhmedNM, YamFK, ZangoZU, WadiIA, BinzowaimilM, et al. . Enhancing methyl orange degradation with laser-generated ZnO and Ce-Doped ZnO nanoparticles. Appl Sci, 2023, 13: 11857.

[10]

AkbarizareM, OfoghiH, HadizadehM, MoazamiN. In vitro assessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt Liver J, 2020.

[11]

Al-DailamiA, KojiI, AhmadI, GotoM. Potential of photobioreactors (PBRs) in cultivation of microalgae. J Adv Res Appl Sci Eng Technol, 2022, 27: 32-44.

[12]

Al-DawodyMF, MakiDF, Al-FarhanyK, FlayyihMA, JamshedW, Tag El DinESM, RaizahZ. Effect of using spirulina algae methyl ester on the performance of a diesel engine with changing compression ratio: an experimental investigation. Sci Rep, 2022, 12: 1-16.

[13]

AlFadhlyNKZ, AlhelfiN, AltemimiAB, VermaDK, CacciolaF. Tendencies affecting the growth and cultivation of genus spirulina: an investigative review on current trends. Plants, 2022, 11: 1-21.

[14]

AlFadhlyNKZ, AlhelfiN, AltemimiAB, VermaDK, CacciolaF, NarayanankuttyA. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: a Review. Molecules, 2022, 27: 5584.

[15]

AlharbiNK, Al-ZabanMI, AlbarakatyFM, AbdelwahabSF, HassanSHA, FawzyMA. Kinetic, isotherm and thermodynamic aspects of Zn2+ biosorption by spirulina platensis: optimization of process variables by response surface methodology. Life, 2022.

[16]

Al-HomaidanAA, AlabdullatifJA, Al-HazzaniAA, Al-GhanayemAA, AlabbadAF. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci, 2015, 22: 795-800.

[17]

AlmomaniF, BohsaleRR. Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: application of isotherm, kinetic models and process optimization. Sci Total Environ, 2021, 755. 142654

[18]

AlprolAE, HeneashAMM, AshourM, AbualnajaKM, AlhashmialameerD, MansourAT, SharawyZZ, Abu-SaiedMA, AbomohraAEF. Potential applications of arthrospira platensis lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on marine rotifer (Brachionus plicatilis). Materials (Basel), 2021.

[19]

Al-QahtaniWH, BinobeadMA. Anti-inflammatory, antioxidant and antihepatotoxic effects of Spirulina platensis against D-galactosamine induced hepatotoxicity in rats. Saudi J Biol Sci, 2019, 26: 647-652.

[20]

AlvesDCS, CoseglioBB, PintoLAA, CadavalTRS. Development of Spirulina/chitosan foam adsorbent for phenol adsorption. J Mol Liq, 2020, 309. 113256

[21]

AnemanaT, OseiO, YeboahE, PekařM. Simultaneous determination of heavy metals in competitive aqueous solutions and contaminated soil systems. Int J Mech Eng, 2022, 7: 974-5823

[22]

AravindMK, VigneshNS, GayathriS, AnjithaN, AthiraKM, GunaseelanS, ArunkumarM, SanjaykumarA, KarthikumarS, MoorthyIMG. Review on rewiring of microalgal strategies for the heavy metal remediation-a metal specific logistics and tactics. Chemosphere, 2023, 313. 137310

[23]

ArmayaU, ZangoZU, KadirHA, MusawaSR. Assessment of heavy metals in soils samples from lambun sarki irrigation sites of katsina metropolis. Resour Environ, 2020, 10: 4-9.

[24]

AstolfiAL, RempelA, CavanhiVAF, AlvesM, DeamiciKM, CollaLM, CostaJAV. Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour Technol, 2020, 301: 122698.

[25]

AstutiIY, SuratmanA, LalB, Hosseini-BandegharaeiA, ZangoZU, AdamuH, SiswantaD. Thiourea-modified chitosan for effective adsorption of Remazol Brilliant Blue R: Synthesis, characterization, adsorption properties, and morphological effects. Desalin Water Treat, 2025, 322. 101092

[26]

AyachiF, LimaEC, SaklyA, MejriH, Ben LamineA. Modeling of adsorption isotherms of reactive red RR-120 on spirulina platensis by statistical physics formalism involving interaction effect between adsorbate molecules. Prog Biophys Mol Biol, 2019, 141: 47-59.

[27]

AyodeleBV, AlsaffarMA, MustapaSI. An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. J Clean Prod, 2020, 245. 118857

[28]

AzizMM, EidNI, NadaAS, AminNED, Ain-ShokaAA. Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environ Sci Pollut Res, 2018, 25: 9060-9070.

[29]

BdulkareemA, NwerPMA. Biosorption of cadmium and lead using microalgae Spirulina sp. Isolated Koya City (Iraq), 2020, 18: 2657-2668

[30]

BellahcenTO, et al. . Evaluation of Moroccan microalgae: Spirulina platensis as a potential source of natural antioxidants. J Complement Integr Med, 2020, 17: 20190036.

[31]

Ben TorkiaY, DottoGL, Ben LamineA. Statistical physics modeling of synthetic dyes adsorption onto Spirulina platensis nanoparticles. Environ Sci Pollut Res, 2018, 25: 28973-28984.

[32]

BertschP, BöckerL, MathysA, FischerP. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol, 2021, 108: 326-342.

[33]

Bin-JumahMN, et al. . Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environ Sci Pollut Res, 2021, 28: 26653-26663.

[34]

BonyadiZ, NasoudariE, AmeriM, GhavamiV, ShamsM, SillanpääM. Biosorption of malachite green dye over Spirulina platensis mass: process modeling, factors optimization, kinetic, and isotherm studies. Appl Water Sci, 2022, 12: 1-11.

[35]

BortoliniDG, MacielGM, de FernandesI, et al. . Functional properties of bioactive compounds from Spirulina spp.: current status and future trends. Food Chem Mol Sci, 2022, 5: 100134.

[36]

BuhaniS, AditiyaI, Al KausarR, SumadiR. Production of a Spirulina sp. algae hybrid with a silica matrix as an effective adsorbent to absorb crystal violet and methylene blue in a solution. Sustain Environ Res, 2019, 1: 1-11.

[37]

BumandalaiO, BaylissKL, MoheimaniNR. Innovative processes for combating contaminants in fresh Spirulina. Algal Res, 2024, 78. 103397

[38]

CalellaP, CerulloG, Di DioM, LiguoriF, Di OnofrioV, GallèF, LiguoriG. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: a systematic review. Front Nutr, 2022.

[39]

CaloviM, RossiS. Comparative analysis of the advantages and disadvantages of utilizing spirulina-derived pigment as a bio-based colorant for wood impregnator. Coatings, 2023, 13: 1158.

[40]

CarceaM, SortoM, BatelloC, NarducciV, AguzziA, AzziniE, FantauzziP, FinottiE, GabrielliP, GalliV, GambelliL, MainthaKM, NambaF, RuggeriS, TurfaniV. Nutritional characterization of traditional and improved dihé, alimentary blue-green algae from the lake Chad region in Africa. Lwt, 2015, 62: 753-763.

[41]

CardosoNF, LimaEC, RoyerB, BachMV, DottoGL, PintoLAA, CalveteT. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater, 2012, 241–242: 146-153.

[42]

ÇelekliA, BozkurtH. Bio-sorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination, 2011, 275: 141-147.

[43]

CepoiL, ZinicovscaiaI, RudiL, ChiriacT, MiscuV, DjurS, StrelkovaL, GrozdovD. Spirulina platensis as renewable accumulator for heavy metals accumulation from multi-element synthetic effluents. Environ Sci Pollut Res, 2020, 27: 31793-31811.

[44]

ChaiklahanR, ChirasuwanN, LohaV, TiaS, BunnagB. Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol Reports, 2018, 20. e00280

[45]

ChoiYK, ChoiTR, GuravR, BhatiaSK, ParkYL, KimHJ, KanE, YangYH. Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Sci Total Environ, 2020, 710: 136282.

[46]

ChojnackaK, ChojnackiA, GóreckaH. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 2005, 59: 75-84.

[47]

ChwilM, Matraszek-GawronR, TerleckaP, SkoczylasMM, TerleckiK. comprehensive review of the latest investigations of the health-enhancing effects of selected properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals, 2024, 17: 1321.

[48]

CostaJAV, FreitasBCB, RosaGM, MoraesL, MoraisMG, MitchellBG. Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol, 2019, 292. 121946

[49]

De Freitas Brito, A., Silva, A.S., De Souza, A.A., Ferreira, P.B., De Souza, I.L.L., Da Cunha Araujo, L.C., Da Silva Félix, G., De Souza Sampaio, R., Da Conceicąõ Correia Silva, M., Tavares, R.L., De Andrade Pereira, R., Neto, M.M., Silva, B.A., 2019. Supplementation with Spirulina platensis Modulates Aortic Vascular Reactivity through Nitric Oxide and Antioxidant Activity. Oxid. Med. Cell. Longev. 2019. https://doi.org/10.1155/2019/7838149

[50]

de la Asunción-Nadal, V., Franco, C., Veciana, A., Ning, S., Terzopoulou, A., Sevim, S., Chen, X.Z., Gong, D., Cai, J., Wendel-Garcia, P.D., Jurado-Sánchez, B., Escarpa, A., Puigmartí-Luis, J., Pané, S., 2022. MoSBOTs: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications. Small 18. https://doi.org/10.1002/smll.202203821

[51]

de MoraiEG, CassuriagAPA, CallejasN, MartinezN, VieitezI, JachmaniánI, SantosLO, de MoraisMG, CostaJAV. Evaluation of Co2 biofixation and biodiesel production by Spirulina (Arthospira) cultivated in air-lift photobioreactor. Brazilian Arch Biol Technol, 2018, 61: 1-11.

[52]

de MoraisMG, da VazB, et al. . Biologically active metabolites synthesized by microalgae. Biomed Res Int, 2015, 2015. 835761

[53]

DemirbasA, EdrisG. Biofuels production from microalgae by liquefaction and supercritical water pyrolysis. Energy Sources. Part A Recover Util Environ Eff, 2017, 39: 827-834

[54]

DenizF, KepekciRA. Equilibrium and kinetic studies of azo dye molecules biosorption on phycocyanin-extracted residual biomass of microalga Spirulina platensis. Desalin Water Treat, 2016, 57: 12257-12263.

[55]

DhamakVM, AmrutkarSV. Nephroprotective Effects of Spirulina platensis on NRK-52E Cell Line: LC-HRMS and Docking Studies Targeting Epidermal Growth Factor Receptor Vikrant. Trop J Nat Prod Res, 2023, 7: 3376-3387

[56]

DiaconuM, SoreanuG, BalanCD, BuciscanuII, MaierV, CretescuI. Study of Spirulina platensis (Arthrospira) development under the heavy metals influence, as a potential promoter of wastewater remediation. Water (Switzerland), 2023.

[57]

DiNicolantonioJJ, BhatAG. Effects of spirulina on weight loss and blood lipids: a review. Open Hear, 2020, 7. e001003

[58]

DottoGL, EsquerdoVM, VieiraMLG, PintoLAA. Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids Surfaces B Biointerfaces, 2012, 91: 234-241.

[59]

DottoGL, CadavalTRS, PintoLAA. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem, 2012, 47: 1335-1343.

[60]

DottoGL, VieiraMLG, EsquerdoVM, PintoLAA. Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Brazilian J Chem Eng, 2013, 30: 13-21.

[61]

EssidN, GharbiR, HarrathAH, MansourL, MahmoudiE, BeyremH, AnsariKGMT, BoufahjaF. Toxicity of a chromium-enriched superfood, Spirulina platensis, assessed by taxonomic and morpho-functional diversity of marine meiofauna. Environ Pollut, 2020, 262. 114350

[62]

FaisG, MancaA, BolognesiF, BorselliM, ConcasA, BusuttiM, BroggiG, SannaP, Castillo-AlemanYM, Rivero-JiménezRA, Bencomo-HernandezAA, Ventura-CarmenateY, AlteaM, PantaleoA, GabrielliG, BiglioliF, CaoG, GiannaccareG. Wide range applications of spirulina: from earth to space missions. Mar Drugs, 2022.

[63]

FAO, 2022. World Food and Agriculture Statistical Yearbook 2022. FAO.

[64]

FasaeiF, BitterJH, SlegersPM, Van BoxtelAJB. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res, 2018, 31: 347-362.

[65]

FattahIMR, NorainiMY, MofijurM, SilitongaAS, BadruddinIA, KhanTMY, OngHC, MahliaTMI. Lipid extraction maximization and enzymatic synthesis of biodiesel from microalgae. Appl Sci, 2020, 10: 6103.

[66]

FinocchioE, LodiA, SolisioC, ConvertiA. Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process. Chem Eng J, 2010, 156: 264-269.

[67]

Gally CR, Reis GS, Lima EC, Puchana MJ, Adebayo MA, Dotto GL. Kinectics studies of adsorption of rr-120 dye using spirulina platensis microalgae and commercial activated carbon as adsorbents from aqueous effluents. 2012.

[68]

GaoY, CongS, HeY, ZouD, LiuY, YaoB, SunW. Study on the mechanism of degradation of tetracycline hydrochloride by microwave-activated sodium persulfate. Water Sci Technol, 2020, 82: 1961-1970.

[69]

GarbaZN, ZangoZU, BabandoAA, GaladimaA. Competitive adsorption of dyes onto granular activated carbon. J Chem Pharm Res, 2015, 7: 710-717

[70]

GarbaZN, HarunaA, TanimuA, BelloBZ, ZangoZU. Recent progress in the preparation, characterization, and applications of modified halloysite nanotubes as adsorbents for wastewater treatment. Korean J Chem Eng, 2023, 40: 1-21.

[71]

GargouriM, AkroutiA, MagnéC, El FekiA, SoussiA. Protective effects of spirulina against hemato-biochemical alterations, nephrotoxicity, and DNA damage upon lead exposition. Hum Exp Toxicol, 2020, 39: 855-869.

[72]

GhallabDS, ShawkyE, KhalifaAA, IbrahimRS. Insights into the molecular mechanisms of Spirulina platensis against rheumatoid arthritis through integrative serum pharmacochemistry and network pharmacology analysis. Food Biosci, 2024, 59. 103902

[73]

Ghamry HI, Shukry M, Kassab MA, Farrag FA, El-shafai NM, Elgendy E, Ibrahim AN, Elgendy SA, Behairy A, Ibrahim SF, Imbrea F, Florin C. Arthrospira platensis nanoparticles mitigate aging-related oxidative injured brain induced by D-galactose in rats through antioxidants, anti- inflammatory, and MAPK pathways 2023, 5591–5606.

[74]

GiwaA, AdeyemiI, DindiA, LopezCG-B, LoprestoCG, CurcioS, ChakrabortyS. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew Sustain Energy Rev, 2018, 88: 239-257.

[75]

GongD, CaiJ, CeliN, FengL, JiangY, ZhangD. Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. J Magn Magn Mater, 2018, 468: 148-154.

[76]

González Fernández LA, Medellín Castillo NA, Sánchez Polo M, Navarro Frómeta AE, Vilasó Cadre JE. Algal-based carbonaceous materials for environmental remediation: advances in wastewater treatment, carbon sequestration, and biofuel applications. 2025.

[77]

GromekW, KołdejN, KurowskiM, MajsiakE. Spirulina (Arthrospira platensis): antiallergic agent or hidden allergen? A literature review. Foods, 2024, 13: 1052.

[78]

GuimarãesO, et al. . Selenium enrichment in the marine microalga Nannochloropsis oceanica. Algal Res, 2021.

[79]

GulerUA, ErsanM, TuncelE, DügenciF. Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp. Process Saf Environ Prot, 2016, 99: 194-206.

[80]

GunasundariE. Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem, 2017, 56: 129-144.

[81]

GunasundariE, KumarPS. Higher adsorption capacity of Spirulina platensis alga for Cr(VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions. IET Nanobiotechnol, 2017, 11: 317-328.

[82]

Gupta C. Role of spirulina supplementation and other nutraceuticals in cardiovascular disease, In: Nutraceuticals in Cardiac Health Management. Apple Academic Press, 2025, pp. 267–296.

[83]

GurgulaO. Strategic patenting by pharmaceutical companies–should competition law intervene?. IIC-International Rev Intellect Prop Compet Law, 2020, 51: 1062-1085

[84]

HaghighiM, ZareLB, GhiasiM. Biodiesel production from Spirulina algae oil over [Cu(H2PDC)(H2O)2] complex using transesterification reaction: Experimental study and DFT approach. Chem Eng J, 2022, 430. 132777

[85]

Hamadi A Al, Uraz G, Katırcıoğlu H, Osmanağaoğlu Ö, Adsorption of Azo Dyes from Textile Wastewater by. Eurasian J Environ Res. 2017;1.

[86]

HamidonTS, GarbaZN, ZangoZU, HussinMH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: current state and future perspectives. Int J Biol Macromol, 2024, 269. 131759

[87]

HanP, LiJ, ZhongH, XieJ, ZhangP, LuQ, LiJ, XuP, ChenP, LengL, ZhouW. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res, 2021, 55. 102240

[88]

HarunSN, HanafiahMM, AzizNIHA. An LCA-based environmental performance of rice production for developing a sustainable agri-food system in Malaysia. Environ Manage, 2021, 67: 146-161.

[89]

Hernández-LepeMA, Wall-MedranoA, López-DíazJA, Juárez-OropezaMA, Luqueño-BocardoOI, Hernández-TorresRP, Ramos-JiménezA. Hypolipidemic effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program in overweight and obese men: a double-blind, randomized, and crossover controlled trial. Mar Drugs, 2019, 17: 270.

[90]

HosseiniM, AhmadiZ, KhoobiM, DehghaniS, KefayatA. High-performance spirulina-bismuth biohybrids for enhanced computed tomography imaging. ACS Sustain Chem Eng, 2020, 8: 13085-13099.

[91]

HtooNYM, KraseasintraO, BuncharoenW, KaewkodT, PekkohJ, TragoolpuaY, KhooKS, ChaipootS, SrinuanpanS, PumasC. In vitro immunomodulation activity of protein hydrolysate from spirulina (Arthrospira platensis): the ingredient of future foods. Front Mar Sci, 2024, 11: 1303025.

[92]

HuS, FanX, QiP, ZhangX. Identification of anti-diabetes peptides from Spirulina platensis. J Funct Foods, 2019, 56: 333-341.

[93]

IlievaY, ZaharievaMM, NajdenskiH, KroumovAD. Antimicrobial activity of arthrospira (Former Spirulina) and dunaliella related to recognized antimicrobial bioactive compounds. Int J Mol Sci, 2024, 25: 5548.

[94]

İlterI, AkyılS, DemirelZ, KoçM, Conk-DalayM, Kaymak-ErtekinF. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J Food Compos Anal, 2018, 70: 78-88.

[95]

Isiyaka HA, Ramli A, Jumbri K, Sambudi NS, Zango ZU, Saad B. Adsorption and artificial neural network modelling of metolachlor removal by MIL-53 (Al) Metal-organic framework. Adv. Robot. Autom. Data Anal. Sel. Pap. from iCITES 2020, Springer Int Publ 2021, 245–255.

[96]

IzadiS, SadeghiM. Biosorption of lead heavy metal from aqueous solutions using spirulina microalgae. J Oceanogr, 2023, 13: 48-63.

[97]

JeswaniHK, ChilversA, AzapagicA. Environmental sustainability of biofuels: a review. Proc r Soc A, 2020, 476: 20200351.

[98]

KalsumU, KusumaHS, RoesyadiA, MahfudM. Lipid extraction from spirulina platensis using microwave for biodiesel production. Korean Chem Eng Res, 2019, 57: 301-304.

[99]

KalsumU, RoesyadiA, MahfudM. The use of co-solvent for insitu transesterification of microalgae with base catalyst under microwave irradiation. IOP Conf Ser Mater Sci Eng, 2019, 462: 8-13.

[100]

KamataK, PiaoZ, SuzukiS, FujimoriT, TajiriW, NagaiK, IyodaT, YamadaA, HayakawaT, IshiwaraM, HoraguchiS, BelayA, TanakaT, TakanoK, HangyoM. Spirulina-templated metal microcoils with controlled helical structures for THz electromagnetic responses. Sci Rep, 2014, 4: 1-7.

[101]

Karami-OsbooR, AhmadpoorF, NasrollahzadehM, MahamM. Polydopamine-coated magnetic Spirulina nanocomposite for efficient magnetic dispersive solid-phase extraction of aflatoxins in pistachio. Food Chem, 2022, 377. 131967

[102]

KausarRA, BuhaniS. Methylene blue adsorption isotherm on Spirulina sp. microalgae biomass coated by silica-magnetite. IOP Conf Ser Mater Sci Eng, 2020.

[103]

KavithaE, Devaraj StephenL, BrishtiFH, KarthikeyanS. Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J Mol Struct, 2021, 1244. 130964

[104]

KhatriP, PanditAB. Systematic review of life cycle assessments applied to sugarcane bagasse utilization alternatives. Biomass Bioenerg, 2022, 158. 106365

[105]

Kőnig-PéterA, CsudaiC, FelingerA, KilárF, PernyesziT. Column studies of heavy metal biosorption by immobilized Spirulina platensis-maxima cells. Desalin Water Treat, 2016, 57: 28340-28348.

[106]

KrishnanH, KaushikD, KumarM, OzE, BrennanC, ProestosC, KumarV. Exploring the natural efficacy of spirulina powder for combating obesity, diabetes, and inflammation. J Sci Food Agric, 2024.

[107]

KumarA, RamamoorthyD, VermaDK, KumarA, KumarN, KanakKR, MarweinBM, MohanK. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus, 2022, 6. 100070

[108]

KumarSC, ThakurAK, AseerJR, NatarajanSK, SinghR, PriyadarshiN, TwalaB. An experimental analysis and ANN based parameter optimization of the influence of microalgae spirulina blends on CI engine attributes. Energies, 2022.

[109]

KumaresanG, SivakumarK, SinghRLF. Effect of abiotic factors on the growth of spirulina platensis strains. Plant Arch., 2020, 20: 4259-4263

[110]

KusmiyatiK, HeratriA, KubikazariS, HidayatA, HadiyantoH. Hydrolysis of microalgae spirulina platensis, chlorella sp., and macroalgae ulva lactuca for bioethanol production. Int Energy J, 2020, 20: 611-620

[111]

LafargaT, Sánchez-ZuranoA, VillaróS, Morillas-EspañaA, AciénG. Industrial production of spirulina as a protein source for bioactive peptide generation. Trends Food Sci Technol, 2021, 116: 176-185.

[112]

LakatosGE, RanglováK, ManoelJC, GrivalskýT, KopeckýJ, MasojídekJ. Bioethanol production from microalgae polysaccharides. Folia Microbiol (Praha), 2019, 64: 627-644.

[113]

LebronYAR, MoreiraVR, SantosLVS, JacobRS. Remediation of methylene blue from aqueous solution by Chlorella pyrenoidosa and Spirulina maxima biosorption: equilibrium, kinetics, thermodynamics and optimization studies. J Environ Chem Eng, 2018, 6: 6680-6690.

[114]

LebronYAR, MoreiraVR, SantosLVS. Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae. J Clean Prod, 2019, 240. 118197

[115]

LesbaniA, AhmadN, MohadiR, RoyaniI, WibiyanS, AmriH, Y.,. Selective adsorption of cationic dyes by layered double hydroxide with assist algae (Spirulina platensis) to enrich functional groups. JCIS Open, 2024, 15. 100118

[116]

LestingiA, AlagawanyM, Di CerboA, CrescenzoG, ZizzadoroC. Spirulina (Arthrospira platensis) used as functional feed supplement or alternative protein source: a review of the effects of different dietary inclusion levels on production performance, health status, and meat quality of broiler chickens. Life, 2024, 14: 1537.

[117]

LiX, YuanZ, HuangZ, KosoA, LiJ, XieB, NiZ, XiaS. The photodegradation property and mechanism of tetracycline by persulfate radical activated In2O3@LDHs Z−scheme heterojunction. Sep Purif Technol, 2022, 302. 122077

[118]

LiuJ, ZhuX, SunL, GaoY. Characterization and anti-diabetic evaluation of sulfated polysaccharide from Spirulina platensis. J Funct Foods, 2022, 95. 105155

[119]

LopesLC, RighiE, CostaJAV. Spirulina and its potential in bioproduct production: a review. Environ Manag Sustain Dev, 2023, 12: 30.

[120]

LuY-M, XiangW-Z, WenY-H. Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol, 2011, 23: 265-269.

[121]

LuY, ChenZ, LinQ, XiaX, LinY, YanJ, HuangM, HuangR. Anti-colon cancer effects of Spirulina polysaccharide and its mechanism based on 3D models. Int J Biol Macromol, 2023, 228: 559-569.

[122]

LuoG, LiuH, YangS, SunZ, SunL, WangL. Manufacturing processes, additional nutritional value and versatile food applications of fresh microalgae Spirulina. Front Nutr, 2024, 11: 1455553.

[123]

MaZ, AhmedF, YuanB, ZhangW. Fresh living Arthrospira as dietary supplements: current status and challenges. Trends Food Sci Technol, 2019, 88: 439-444.

[124]

MaddiboyinaB, VanamamalaiHK, RoyH, RamaiahG. Food and drug industry applications of microalgae Spirulina platensis: a review. J Basic Microbiol, 2023, 63: 573-583.

[125]

MahmadA, NohTU, ShaharunMS, ZangoZU. Adsorption and molecular docking study of bisphenol a using reusable ZIF–8 (Zn) metal-organic frameworks in an aqueous solution. Malaysian J Anal Sci, 2022, 26: 965-975

[126]

MalakootianM, Khodashenas LimoniZ, MalakootianM. The efficiency of lead biosorption from industrial wastewater by micro-alga spirulina platensis. Int J Environ Res, 2016, 10: 357-366

[127]

MalletzidouL, KyratzopoulouE, KyzakiN, NerantzisE, KazakisNA. Towards the sustainable removal of heavy metals from wastewater using arthrospira platensis: a laboratory-scale approach in the context of a green circular economy. Appl Sci, 2025, 15: 791.

[128]

MarjanovićB, BenkovićM, JurinaT, Sokač CvetnićT, ValingerD, Gajdoš KljusurićJ, Jurinjak TušekA. Bioactive compounds from Spirulina spp.–nutritional value, extraction, and application in food industry. Separations, 2024, 11: 257.

[129]

Martínez-SámanoJ, De OcaATM, et al. . Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: Results from exploratory controlled clinical trial. Mar Drugs, 2018.

[130]

MarzbaliMH, MirAA, PazokiM, PourjamshidianR, TabeshniaM. Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. J Environ Chem Eng, 2017, 5: 1946-1956.

[131]

MazloomiSM, SamadiM, DavarpanahH, BabajafariS, ClarkCCT, GhaemfarZ, RezaiyanM, MosallanezhadA, ShafieeM, RostamiH. The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients: a randomized double-blinded clinical trial. Food Sci Nutr, 2022, 10: 317-328.

[132]

MengQ, XieC, DingR, CaoL, MaK, LiL, WengZ, WangZ. Bio-template synthesis of spirulina/α-Fe2O3 composite with improved surface wettability. Chem Res Chinese Univ, 2018, 34: 1058-1062.

[133]

Menger-KrugE, Niederste-HollenbergJ, HillenbrandT, HiesslH. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol, 2012, 46: 11505-11514.

[134]

MichaelA, KyewalyangaMS, LugomelaCV. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann Microbiol, 2019, 69: 1387-1395.

[135]

MichalakI, MironiukM, GodlewskaK, TryndaJ, MaryczK. Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochem, 2020, 88: 129-137.

[136]

MirzaSS, AkbarS, IjazMU, MorowvatMH, IshaqueA, FatimaK. Nutritional health connection of algae and its pharmaceutical value as anticancer and antioxidant constituents of drugs. Recent Pat Biotechnol, 2025, 19: 19-34.

[137]

MitrogiannisD, MarkouG, ÇelekliA, BozkurtH. Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Biochem Pharmacol, 2015, 3: 670-680.

[138]

MittalV, GhoshUK. Bioresource technology reports optimization of biodiesel production from Spirulina microalgae via nanocatalytic transesterification process. Bioresour Technol Reports, 2023, 23. 101504

[139]

MittalR, SharmaA, BhardwajAK, BhateriaR, BansalS, KashyapR, BhukalS. Removal of chromium (VI) using spirulina assisted synthesized mesoporous iron oxide nanoparticles. Inorg Chem Commun, 2023, 154. 110881

[140]

MohadiR, HanafiahZ, HermansyahH, ZulkifliH. Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Sci Technol Indones., 2017, 2: 102-104.

[141]

MoradiS, ZiaeiR, FoshatiS, MohammadiH, NachvakSM, RouhaniMH. Effects of Spirulina supplementation on obesity: a systematic review and meta-analysis of randomized clinical trials. Complement Ther Med, 2019, 47. 102211

[142]

MoubayedNMS, Al-houriHJ. Characterization of adsorption ability of Spirulina platensis for copper ions removal from aqueous solutions. Desalin Water Treat, 2022, 250: 118-125.

[143]

MousaviPS, EmtyazjooM, KazemiA. Optimization of malachite green adsorption from aqueous solution using magnetic composite spirulina/chitosan. J Water Wastewater, 2023, 33: 95-108.

[144]

MuhamadKN, SahrinNT, AlakeelRA, SyedR, ArdoFM, WoonJM, TanWN, ChengCK, ZangoZU, HoCD, LamSM, SinJC, KhooKS, KiatkittipongW, LimJW. Low thermal pre-treatment of palm kernel expeller to enhance microalgal hydrogen production. Fuel, 2023, 345. 128193

[145]

MünzelT, DaiberA. Antihypertensive Decapeptide from Cyanobacterium Spirulina platensis: Superfood with eNOS (Endothelial NO Synthase) Enhancer Properties. Hypertension, 2019, 73: 291-293.

[146]

Murad ME, Al-Dawody MF (2020) Biodiesel production from spirulina microalgae oil. IOP Conf Ser Mater Sci Eng. 928. https://doi.org/10.1088/1757-899X/928/2/022127

[147]

MurthyGP, KumarR. Chemical characterization of algae oil and optimization of transesterification parameters for boosting of algal biodiesel production from spirulina wild stuff explored in the natural habitation. Egypt J Chem, 2021, 64: 5407-5432.

[148]

MusahBI, WanP, XuY, LiangC, PengL. Contrastive analysis of nickel (II), iron (II), copper (II), and chromium (VI) removal using modified Chlorella vulgaris and Spirulina platensis: characterization and recovery studies. J Environ Chem Eng, 2022, 10. 108422

[149]

MusioB, AhmedMH, et al. . A spectroscopic study to assess heavy metals absorption by a combined hemp/spirulina system from contaminated soil. Environ Adv, 2022, 7. 100144

[150]

NabtiB, BammouneN, MelianiH, StambouliB. Antioxidant and antimicrobial activities of Spirulina from the region of Tamanrasset, Algeria. J Herb Med, 2023, 41. 100748

[151]

NautiyalP, SubramanianKA, DastidarMG. Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process. Fuel, 2014, 135: 228-234.

[152]

NeagE, StuparZ, VaraticeanuC, SenilaM, RomanC. Optimization of lipid extraction from spirulina spp by ultrasound application and mechanical stirring using the Taguchi method of experimental design. Molecules, 2022, 27: 6794.

[153]

NithyaK, SathishA, PradeepK, BaalajiSK. Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. J Environ Chem Eng, 2019, 7. 103273

[154]

PakdelM, OlsenA, BarEMS. A review of food contaminants and their pathways within food processing facilities using open food processing equipment. J Food Prot, 2023, 86. 100184

[155]

PalaniswamyR, VeluchamyC. Biosorption of heavy metals by spirulina platensis from electroplating industrial effluent. Env Sci Ind J, 2017, 13: 139

[156]

PandeyR, SinghS. Spirulina and herbal combination on metabolic alterations of cardiovascular diseases (CVDs). Int J Res Rev, 2022, 9: 308-317.

[157]

ParkHJ, LeeYJ, RyuHK, KimMH, ChungHW, KimWY. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab, 2008, 52: 322-328.

[158]

PeresEC, CunhaJM, DortzbacherGF, PavanFA, LimaÉC, FolettoEL, DottoGL. Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng, 2018, 6: 677-685.

[159]

Podgórska-KryszczukI. Spirulina–an invaluable source of macro-and micronutrients with broad biological activity and application potential. Molecules, 2024, 29: 5387.

[160]

PrabakaranG, SampathkumarP, KavisriM, MoovendhanM. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int J Biol Macromol, 2020, 153: 256-263.

[161]

PradanaYS, AzmiFA, MasruriW, HartonoM. Biodiesel production from wet Spirulina sp. by one-step. MATEC Web Conf, 2018, 156: 1-4

[162]

PreteV, AbateAC, Di PietroP, De LuciaM, VecchioneC, CarrizzoA. Beneficial effects of spirulina supplementation in the management of cardiovascular diseases. Nutrients, 2024, 16: 642.

[163]

PurnamaA, WijayaK, TahirI, SuyonoEA, BudimanA. Optimizations of microwave-assisted extraction and transesterification of bio-crude oil from spirulina (Arthrospira platensis). Korean J Chem Eng, 2020, 37: 466-474.

[164]

PutriLSE, DewiPS, DasumiatiD. Adsorption of Cd And Pb using biomass of microalgae Spirulina platensis. Int J Geomate, 2017, 13: 121-126.

[165]

RagazaJA, HossainMS, MeilerKA, VelasquezSF, KumarV. A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Rev Aquac, 2020, 12: 2371-2395.

[166]

RahmanMA, AzizMA, Al-khulaidiRA, SakibN, IslamM. Biodiesel production from microalgae Spirulina maxima by two step process: optimization of process variable. J Radiat Res Appl Sci, 2017, 10: 140-147.

[167]

RahmannG, AzimK, BrányikováI, ChanderM, DavidW, ErismanJW, GrimmD, HammermeisterA, JiL, KuenzA. Innovative, sustainable, and circular agricultural systems for the future. Org Agric, 2021, 11: 179-185.

[168]

RawindranH, KhooKS, EthirajB, SuparmaniamU, LeongWH, RaksasatR, LiewCS, SahrinNT, LamMK, KiatkittipongW, LimJW, ZangoZU, ShahidMK, AbdelghaniHTM, NgHS. Fundamental alteration of cellular biochemicals from attached microalgae onto palm kernel expeller waste upon optimizing the growth environment in forming adhesion complex. Environ Res, 2023, 233. 116533

[169]

RempelA, de Souza SossellaF, MargaritesAC, AstolfiAL, SteinmetzRLR, KunzA, TreichelH, CollaLM. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol, 2019, 288. 121588

[170]

RezaeiH. Biosorption of chromium by using Spirulina sp. Arab J Chem, 2016, 9: 846-853.

[171]

RhoadesJ, FotiadouS, PaschalidouG, PapadimitriouT, Ordóñez, KormasK, VardakaE, LikotrafitiE. Microbiota and cyanotoxin content of retail spirulina supplements and spirulina supplemented foods. Microorganisms, 2023, 11: 1175.

[172]

Robledo-PadillaF, AquinesO, Silva-NúñezA, Alemán-NavaGS, Castillo-ZacaríasC, Ramirez-MendozaRA, Zavala-YoeR, IqbalHMN, Parra-SaldívarR. Evaluation and predictive modeling of removal condition for bioadsorption of indigo blue dye by Spirulina platensis. Microorganisms, 2020, 8: 1-12.

[173]

RodríguezR, EspadaJJ, MorenoJ, VicenteG, BautistaLF, MoralesV, Sánchez-BayoA, DufourJ. Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach. Renew Energy, 2018, 129: 724-732.

[174]

Saeedi DehaghaniAH, PirouzfarV. Investigation on the effect of microalgae Chlorella sp. and Spirulina on biodiesel production. Pet Chem, 2018, 58: 702-708.

[175]

SahilS, BodhS, VermaP. Spirulina platensis: a comprehensive review of its nutritional value, antioxidant activity and functional food potential. J Cell Biotechnol, 2024, 10: 159-172.

[176]

SakaC, KayaM, BekiroğullariM. Spirulina Platensis microalgae strain modified with phosphoric acid as a novel support material for Co–B catalysts: its application to hydrogen production. Int J Hydrogen Energy, 2020, 45: 2872-2883.

[177]

SallaACV, MargaritesAC, SeibelFI, HolzLC, BriãoVB, BertolinTE, CollaLM, CostaJAV. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol, 2016, 209: 133-141.

[178]

SalogluD, IrmakO. Removal of azo dyes–tartrazine, carmoisine, and Allura Red–from wastewater using Spirulina biomass-immobilized alginate beads : equilibrium, kinetics, thermodynamics, desorption, and reusability. Desalin Water Treat, 2021, 220: 431-435.

[179]

SandeepKP, ShuklaSP, VennilaA, PurushothamanCS, ManjulekshmiN. Cultivation of Spirulina (Arthrospira) platensis in low cost seawater based medium for extraction of value added pigments. Indian J Geo-Marine Sci, 2015, 44: 384-393

[180]

SaraswathiK, KavithaCN. Spirulina: pharmacological activities and health benefits. J Young Pharm, 2023, 15: 441-447.

[181]

SaravananA, KumarPS, BadawiM, MohanakrishnaG, AminabhaviTM. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem Eng J, 2023, 453. 139754

[182]

SayadiMH, RashkiO, ShahriE. Application of modified Spirulina platensis and Chlorella vulgaris powder on the adsorption of heavy metals from aqueous solutions. J Environ Chem Eng, 2019, 7. 103169

[183]

SayedAEDH, AbdAllahEA, HamedM, SolimanHAM. Hepato-nephrotoxicity in late juvenile of Oreochromis niloticus exposed to gibberellic acid: ameliorative effect of Spirulina platensis. Pestic Biochem Physiol, 2020, 167. 104600

[184]

SeghiriR, LegrandJ, HsissouR, EssamriA. Comparative study of the impact of conventional and unconventional drying processes on phycobiliproteins from Arthrospira platensis. Algal Res, 2021, 53. 102165

[185]

SellaouiL, GerhardtR, DhaoudiF, ChebaaneS, ManaiL, AzharyA, SaedoonH, de FariasBS, DottoGL, CadavalTRSA, de Almeida PintoLA, Bonilla-PetricioletA. Novel films prepared from spirulina and chitosan for textile pollutant removal: experiments and theoretical study of adsorption equilibrium via an advanced theoretical approach. Sep Purif Technol, 2024, 329. 125158

[186]

Seyhaneyildiz CanS, KoruE, CirikS. Effect of temperature and nitrogen concentration on the growth and lipid content of Spirulina platensis and biodiesel production. Aquac Int, 2017, 25: 1485-1493.

[187]

ShahMAR, ZhuF, CuiY, HuX, ChenH, KayaniSI, HuoS. Mechanistic insights into the nutritional and therapeutic potential of Spirulina (Arthrospira) spp.: challenges and opportunities. Trends Food Sci TEchnol, 2024, 151: 104648.

[188]

ShahbazM, AmmarM, SukarniS. Conversion of Spirulina platensis into methanol via gasification: process simulation modeling and economic evaluation. Digit Chem Eng, 2025, 14. 100204

[189]

ShahidA, MalikS, ZhuH, XuJ, NawazMZ, NawazS, AlamMA, MehmoodMA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ, 2020, 704. 135303

[190]

ShaoW, EbaidR, AbomohraAEF, ShahenM. Enhancement of Spirulina biomass production and cadmium biosorption using combined static magnetic field. Bioresour Technol, 2018, 265: 163-169.

[191]

ShiraziHM, Karimi-SabetJ, GhotbiC. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresour Technol, 2017, 239: 378-386.

[192]

SinghU, SinghP, SinghAK, LaxmiK, et al. . Identification of antifungal and antibacterial biomolecules from a cyanobacterium, Arthrospira platensis. Algal Res, 2021, 54. 102215

[193]

SoniRA, SudhakarK, RanaRS. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep, 2019, 5: 327-336.

[194]

SorrentiV, CastagnaDA, FortinguerraS, BurianiA, ScapagniniG, WillcoxDC. Spirulina microalgae and brain health: a scoping review of experimental and clinical evidence. Mar Drugs, 2021, 19: 1-12.

[195]

SpínolaMP, CostaMM, TavaresB, PestanaJM, TavaresJC, MartinsCF, AlfaiaCM, MacielV, CarvalhoDFP, MouratoMP. Impact of long-term feeding a high level of Spirulina combined with enzymes on growth performance, carcass traits and meat quality in broiler chickens. Front Vet Sci, 2024, 11: 1451516.

[196]

SpínolaMP, MendesAR, PratesJAM. Chemical composition, bioactivities, and applications of Spirulina (Limnospira platensis) in food, feed, and medicine. Foods, 2024, 13: 3656.

[197]

SubramaiamH, ChuWL, RadhakrishnanAK, ChakravarthiS, SelvadurayKR, KokYY. Evaluating anticancer and immunomodulatory effects of spirulina (Arthrospira) platensis and gamma-tocotrienol supplementation in a syngeneic mouse model of breast cancer. Nutrients, 2021.

[198]

SumprasitN, WagleN, GlanprachaN, AnnachhatreAP. International biodeterioration & biodegradation biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegradation, 2017, 119: 196-204.

[199]

SumprasitN, WagleN, GlanprachaN, AnnachhatreAP. Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegradation, 2017, 119: 196-204.

[200]

SunX, HuangH, ZhuY, DuY, YaoL, JiangX, GaoP. Adsorption of Pb2+ and Cd2+ onto Spirulina platensis harvested by polyacrylamide in single and binary solution systems. Colloids Surfaces A Physicochem Eng Asp, 2019, 583. 123926

[201]

Surya PradanaY, Azwar AzmiF, MasruriW, HartonoM. Biodiesel production from wet Spirulina sp. by one-step extraction-transesterification. MATEC Web Conf, 2018.

[202]

TaheriniaZ, Ghorbani-ChoghamaraniA, LemraskiEG. Biodiesel production from spirulina algae oil over cobalt microsphere through esterification reaction. Mater Today Sustain, 2024, 25. 100647

[203]

TajvidiE, NahavandizadehN, PournaderiM, PourrashidAZ, BossaghzadehF, KhoshnoodZ. Study the antioxidant effects of blue-green algae Spirulina extract on ROS and MDA production in human lung cancer cells. Biochem Biophys Reports, 2021, 28. 101139

[204]

TavaresTD, AntunesJC, PadrãoJ, RibeiroAI, ZilleA, AmorimMTP, FerreiraF, FelgueirasHP. Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 2020, 9: 314.

[205]

ThevarajahB, NishshankaGKSH, PremaratneM, NimarshanaPHV, NagarajanD, ChangJS, AriyadasaTU. Large-scale production of Spirulina-based proteins and c-phycocyanin: a biorefinery approach. Biochem Eng J, 2022, 185. 108541

[206]

ThevarajahB, NimarshanaPHV, Shehan SandeepaGD, BoopathyR, AriyadasaTU. Upcycling food processing industrial wastes in Spirulina cultivation: a perspective on the advancement of Sustainable Development Goal 12. Trends Food Sci Technol, 2024, 149. 104537

[207]

TrottaT, PorroC, CianciulliA, PanaroMA. Beneficial effects of spirulina consumption on brain health. Nutrients, 2022, 14: 1-17.

[208]

TsiropoulosI, FaaijAPC, SeabraJEA, LundquistL, SchenkerU, BrioisJ-F, PatelMK. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int J Life Cycle Assess, 2014, 19: 1049-1067.

[209]

TurkkulB, DeliismailO, SekerE. Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst. Renew Energy, 2020, 145: 1014-1019.

[210]

TzachorA, Smidt-JensenA, RamelA, GeirsdóttirM. Environmental impacts of large-scale Spirulina (Arthrospira platensis) production in hellisheidi geothermal park iceland: life cycle assessment. Mar Biotechnol, 2022, 24: 991-1001.

[211]

UsharaniG, SrinivasanG, SivasakthiS, SaranrajP. Antimicrobial activity of spirulina platensis solvent extracts against pathogenic bacteria and fungi Department of Civil and Structural Engineering, Annamalai University. Adv Biol Res (Rennes), 2015, 9: 292-298.

[212]

VellaiyanS. Unlocking the potential of Spirulina microalgae: cultivating in wastewater treatment for sustainable biofuel production. Sustain Chem Pharm, 2024, 41. 101705

[213]

Villaró-CosS, SánchezJLG, AciénG, LafargaT. Research trends and current requirements and challenges in the industrial production of spirulina as a food source. Trends Food Sci Technol, 2024, 143. 104280

[214]

Villen-guzmanM, JiménezC, Rodriguez-marotoJM. Batch and fixed-bed biosorption of Pb (II) using free and alginate-immobilized Spirulina. Processes, 2021, 9: 1-13.

[215]

WangX, CaiJ, SunL, ZhangS, GongD, LiX, YueS, FengL, ZhangD. Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Appl Mater Interfaces, 2019, 11: 4745-4756.

[216]

WangY-Y, XuB-L, DongC-M, SunY-Y. The nutritional value of Spirulina and utilization research. Life Res, 2023, 6: 15.

[217]

WellsML, PotinP, CraigieJS, RavenJA, MerchantSS, HelliwellKE, SmithAG, CamireME, BrawleySH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol, 2017, 29: 949-982.

[218]

WenJ, DuanF, YangL, LiuX, HuangY, KeG, HeH, YangH. The activity and mechanism differences of typical tourmalines in the activation of persulfate for tetracycline degradation. J Solid State Chem, 2022, 314. 123383

[219]

WerlangEB, JulichJ, MullerMVG, de Farias NevesF, Sierra-IbarraE, MartinezA, de SchneiderR. Bioethanol from hydrolyzed Spirulina (Arthrospira platensis) biomass using ethanologenic bacteria. Bioresour Bioprocess, 2020, 7: 1-9.

[220]

WuQ, LiuL, MironA, KlímováB, WanD, KučaK. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol, 2016, 90: 1817-1840.

[221]

WuJY, TsoR, TeoHS, HaldarS. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr, 2023, 10: 1277343.

[222]

WuangSC, KhinMC, ChuaPQD, LuoYD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res, 2016, 15: 59-64.

[223]

YahiaMB, GerhardtR, SellaouiL, Al-ZahraniHYS, InácioAPO, DiasD, CadavalTRSA, de Almeida PintoLA, Bonilla-PetricioletA, BadawiM. An emerging application of chitosan and chitosan/spirulina films for Pb2+ adsorption: New physicochemical insights via experimental and theoretical studies. Sep Purif Technol, 2024, 337: 1-6.

[224]

YeC, MuD, HorowitzN, XueZ, ChenJ, XueM, ZhouY, KluttsM, ZhouW. Life cycle assessment of industrial scale production of Spirulina tablets. Algal Res, 2018, 34: 154-163.

[225]

YousefiR, SaidpourA, MottaghiA. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: a systematic review. Complement Ther Med, 2019, 42: 137-144.

[226]

YuBS, PyoS, LeeJ, HanK. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact, 2024, 23: 308.

[227]

ZangoZU, KadirHA, ImamSS, MuhammadAI, AbuIG. Optimization studies for catalytic conversion of waste vegetable oil to biodiesel. Am J Chem, 2019, 9: 27-32.

[228]

ZangoZU, DennisJO, AljameelAI, UsmanF, AliMKM, AbdulkadirBA, AlgessairS, AldaghriOA, IbnaoufKH. Effective removal of methylene blue from simulated wastewater using ZnO-chitosan nanocomposites: optimization, kinetics, and isotherm studies. Molecules, 2022.

[229]

ZangoZU, NurMR, et al. . Advancements in clay materials for trace level determination and remediation of phenols from wastewater: a review. Separations, 2023, 10: 1-32.

[230]

ZangoZU, GarbaA, HarunaA, ImamSS, KatsinaAU, AliAF, AbidinAZ, ZangoMU, GarbaZN, Hosseini-BandegharaeiA, YugudaAU, AdamuH. A systematic review on applications of biochar and activated carbon derived from biomass as adsorbents for sustainable remediation of antibiotics from pharmaceutical wastewater. J Water Process Eng, 2024, 67. 106168

[231]

ZangoZU, KhooKS, GarbaA, LawalMA, AbidinAZ, WadiIA, EisaMH, AldaghriO, IbnaoufKH, LimJW, OhWD. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. Env Geochem Heal, 2024, 46: 1-51.

[232]

ZangoZU, IbnaoufKH, GarbaA, AldaghriO, WadiIA, Hosseini-BandegharaeiA, BaigenzhenovO. Advances in green synthesis, modification strategies, and photocatalytic application of metal oxide nanoparticles for organic pollutants degradation: a comprehensive and in-depth review. J Mol Liq, 2025, 428. 127497

[233]

Zango ZU, Ramli A, Jumbri, K. UiO-66 and ZIF-8 Metal-organic frameworks for acenaphthene adsorption, In: Springer Proceedings in Complexity. Springer Singapore, 2021, pp. 238–253.

[234]

Zango ZU, Garba A, Shittu FB, Imam SS, Haruna A, Zango MU, Wadi IA, Bello U, Adamu H, Keshta BE, Bokov DO. A state-of-the-art review on green synthesis and modifications of ZnO nanoparticles for organic pollutants decomposition and CO2 conversion. J Hazard Mater Adv. 2025:100588.

[235]

ZeinalianR, FarhangiMA, ShariatA, Saghafi-AslM. The effects of Spirulina platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med, 2017, 17: 1-8.

[236]

ZeraatkarAK, AhmadzadehH, TalebiAF, MoheimaniNR, McHenryMP. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage, 2016, 181: 817-831.

[237]

ZhaiJ, LiX, LiW, RahamanMH, ZhaoY, WeiB, WeiH. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol Eng, 2017, 108: 83-92.

[238]

ZhangF, ManYB, MoWY, WongMH. Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Rev Aquac, 2020, 12: 582-599.

[239]

ZhangL, YangL, YiF, YangY, YouX. Experimental and theoretical study of multiple active site-functionalized Spirulina residue-based porous carbon as an economical adsorbent for NH3 and SO2 adsorption: micro- and macro-mechanistic investigations. J Clean Prod, 2024, 469. 143167

[240]

ZhengC, LiZ, XuT, ChenL, FangF, WangD, DaiP, WangQ, WuX, YanX. Spirulina-templated porous hollow carbon@magnetite core-shell microswimmers. Appl Mater Today, 2021, 22. 100962

[241]

ZhouJ, WangM, SaraivaJA, MartinsAP, PintoCA, PrietoMA, Simal-GandaraJ, CaoH, XiaoJ, BarbaFJ. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem, 2022, 384. 132236

[242]

ZinicovscaiaI, SafonovA, OstalkevichS, GundorinaS, NekhoroshkovP, GrozdovD. Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int J Phytoremediation, 2019, 21: 1442-1448.

[243]

ZulfadhliM, SobriA, ShiongK, SengC, WeiJ, TongW, ZhouY, ZangoZU, BashirMJK. Abreast insights of harnessing microalgal lipids for producing biodiesel: a review of improving and advancing the technical aspects of cultivation. J Environ Manage, 2024, 360. 121138

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

224

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/