Unlocking the potential of sugarcane bagasse: a comprehensive analysis for advanced energy conversion
Nestor Proenza Pérez , Javier Alejandro Rodríguez Travieso , Elbis D´Espaux Shelton , Daniel Travieso Pedroso , Einara Blanco Machin , Celso Eduardo Tuna , José Luz Silveira
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 60
Unlocking the potential of sugarcane bagasse: a comprehensive analysis for advanced energy conversion
The sugarcane bagasse was analyzed for Particle Size Distribution (PSD) with a mean geometric diameter of 0.722 mm. Various standard techniques assessed its physical and chemical properties, including density measurements, higher heating value (HHV), thermogravimetric analysis (TGA/DTA), and compositional, proximate, ultimate, and CHNS/O analysis. The raw bagasse showed higher volatile matter, fixed carbon, ash content, and HHV of 16 MJ/kg, with lower moisture content (8.71%). Thermal analysis indicated a peak degradation temperature for organic matter at 310–330 °C, and bagasse exhibited a higher combustion index than fossil fuels and other biomasses. Logarithmic models were obtained to determine the real, particle, and apparent densities of bagasse with the mean particle size within the 0.075–9.5 mm range, showing adequate results for particles with a mean diameter greater than 0.15 mm. For smaller particles, the reported errors were 12.6%, 8.23%, and 28%, respectively. These findings highlight sugarcane bagasse's significant potential for thermochemical conversion systems and its importance in selecting and designing fluidized bed technologies like pneumatic conveying, drying, combustion, and gasification equipment.
Sugarcane bagasse / Densities / Physical properties / Particle size / Models
| [1] |
A. E1757-01 (2011) Standard Practice for Preparation of Biomass for Compositional Analysis 1. 01(Reapproved 2007): 6–9. https://doi.org/10.1520/E1757-01R07.2 |
| [2] |
A. E828–81 (2004) standard test method for designating the size of RDF-3 from its sieve analysis. 81(Reapproved 2004): 1–8 |
| [3] |
A. E830-87 (1996) Standard test method for ash in the analysis sample of refuse-derived fuel. 87(Reapproved 2004): 1–2. https://doi.org/10.1520/E0830-87R04.2 |
| [4] |
A. E897-88 (2004) Standard Test Method for Volatile Matter in the Analysis Sample of Refuse-Derived Fuel (Withdrawn 2004). ASTM Int. West Conshohocken, PA, 1988, 2004. |
| [5] |
|
| [6] |
|
| [7] |
Alarcon GAR, Sanchez CG, Gomez EO, Cortez LAB (2006) Caracterizacion del bagazo de caña de azucar. Parte I: Características físicas. 6th Encontro Energ. no Meio Rural. Campinas. 1–10 |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
ASTM E871-82 (2014) Standard test method for moisture analysis of particulate wood fuels. 82(Reapproved 2013): 1–2. https://doi.org/10.1520/E0871-82R13.2 |
| [13] |
ASTM 1755-01 (2015) Standard test method for ash in biomass |
| [14] |
ASTM E711-87 (1992) E711-87 Standart test method for gross calorific value of refuse-derived fuel by the bomb calorimeter |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Braz CEM (2014) Caracterização de biomassa lignocelulósica para uso em processos térmicos de geração de energia. Universidade Estadual Paulista |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
CONAB (2022) Acompanhamento da safra brasileira - Quarto levantamento safra 2021/22. |
| [25] |
CONAB (2022) Acompanhamento da Safra Brasileira. Quarto levantamento safra 2022/23. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
E872-82 (1982) Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM. (Reapproved 2013): 1–3. https://doi.org/10.1520/E0872-82R06.2. |
| [35] |
|
| [36] |
EPE (2022) Balanço Energético Nacional (BEN) 2022: Ano base 2021 - Relatório Final. 264. |
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Makray ZT (1984) Gaseificação de madeira em gaseificador co-corrente para a produção de gás de médio poder calorífico e gás de síntese. Campinas: UNICAMP, 1984, 246 p., Tese (Doutorado em Engenharia de Alimentos) - Faculdade de Engenharia de Alimentos, UNICAMP, 1984 |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
T. Cm-07 (2007) TAPPI Standard Methods. Solvent Extractives ofWood and Pulp, T204 cm-07; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA |
| [88] |
T. Om-11 (2011) TAPPI Standard Methods. Acid-Insoluble Lignin in Wood and Pulp, T222 om-11; Technical Association of the Pulp and Paper Industry,: Atlanta, GA, USA |
| [89] |
T. T. Pm-99 (2006) TAPPI Standard Methods. Acetone extractives of wood and pulp, T280 pm-99; Technical Association of The Pulp and Paper Industry: Atlanta, GA, USA |
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
The Author(s)
/
| 〈 |
|
〉 |