Uncovering a novel biosynthetic gene cluster for sordarin through genome mining in the fungus Talaromyces adpressus

Qianqian Xu , Xiaomeng Ren , Linzhen Hu , Qiaoxin Xu , Xiaodong Zhang , Mengyi Deng , Ying Ye , Yonghui Zhang , Yuanyuan Lu , Yuben Qiao

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 35

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 35 DOI: 10.1186/s40643-025-00864-x
Research

Uncovering a novel biosynthetic gene cluster for sordarin through genome mining in the fungus Talaromyces adpressus

Author information +
History +
PDF

Abstract

To explore the chemical and biological diversities of diterpenoids from the fungus Talaromyces adpressus, a previously unknown biosynthetic gene cluster (BGC, tdn) for sordarin (a well-known fungal antibiotics) was discovered by leveraging the genome mining method. Heterologous expressions of key genes of tdn in Aspergillus oryzae, led to the determination of one new diterpenoid, cycloaraneosene-9-ol-8-one (4), and three known diterpenoids, cycloaraneosene (1), cycloaraneosene-9-ol (2), cycloaraneosene-8,9-diol (3). The structures of 14 was elucidated well via detailed analysis of 1D and 2D NMR, GCMS, HRESIMS, IR data, and comparison with reported data. Structurally, compounds 14 were belonging to fusicoccane diterpenoids with a classical tricyclic 5/8/5 ring system, which are participated in the biosynthesis of sordarin. Compound 4 maybe a key precursor for a Baeyer–Villiger like reaction with C8–C9 bond cleavage in the biosynthetic pathway of sordarin. Moreover, all isolates were evaluated for their bioactivities, compounds 3, and 4 exhibited inhibitory activities against the human cancer cell lines with IC50 values ranging from 7.8 to 32.4 µM. 3 and 4 promote cell apoptosis of HCT-116 and HepG2 cells, and suppress cell migration of HepG2 cells. As well, 3 and 4 also decrease gene expression of cell proliferation related molecules BCL-2 and cyclin D1, while increase expression of cell apoptosis related gene BAX. Targets predication and molecular docking indicate that compound 4 exhibits stronger affinity for DBL, suggesting its excellent binding potential. This finding will be enriched the structures and bioactivities of diterpenoids with a tricyclic 5/8/5 ring system, most importantly, will provide new strategies for the synthetic biological research of sordarins.

Keywords

Biological Sciences / Biochemistry and Cell Biology

Cite this article

Download citation ▾
Qianqian Xu, Xiaomeng Ren, Linzhen Hu, Qiaoxin Xu, Xiaodong Zhang, Mengyi Deng, Ying Ye, Yonghui Zhang, Yuanyuan Lu, Yuben Qiao. Uncovering a novel biosynthetic gene cluster for sordarin through genome mining in the fungus Talaromyces adpressus. Bioresources and Bioprocessing, 2025, 12(1): 35 DOI:10.1186/s40643-025-00864-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AghazadehB, ZhuK, KubiseskiTJ, LiuGA, PawsonT, ZhengY, RosenMK. Structure and mutagenesis of the Dbl homology domain. Nat Struct Biol, 1998, 5121098-1107.

[2]

BaylyCI, CieplakP, CornellW, KollmanPA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem, 1993, 974010269-10280.

[3]

BüschlebM, DorichS, HanessianS, TaoD, SchenthalKB, OvermanLE. Synthetic strategies toward natural products containing contiguous Stereogenic quaternary carbon atoms. Angew Chem Int Ed, 2016, 55134156-4186.

[4]

Case DA, Aktulga HM, Belfon K, Cerutti DS, Cisneros GA, Cruzeiro VWD, Forouzesh N, Giese TJ, Götz AW, Gohlke H, Izadi S, Kasavajhala K, Kaymak MC, King E, Kurtzman T, Lee T-S, Li P, Liu J, Luchko T, Luo R, Manathunga M, Machado MR, Nguyen HM, O’Hearn KA, Onufriev AV, Pan F, Pantano S, Qi R, Rahnamoun A, Risheh A, Schott-Verdugo S, Shajan A, Swails J, Wang J, Wei H, Wu X, Wu Y, Zhang S, Zhao S, Zhu Q, Cheatham TE, Roe III, Roitberg DR, Simmerling A, York C, Nagan DM, Merz MC K.M., Jr. AmberTools. J Chemical Information and Modeling. 2023;63(20):6183–6191

[5]

ChaudharyNK, CrombieA, VuongD, LaceyE, PiggottAM, KarusoP. Talauxins: hybrid Phenalenone dimers from talaromyces stipitatus. J Nat Prod, 2020, 8341051-1060.

[6]

ChibaS, KitamuraM, NarasakaK. Synthesis of (–)-Sordarin. J Am Chem Soc, 2006, 128216931-6937.

[7]

FostelJM, LarteyPA. Emerging novel antifungal agents. Drug Discovery Today, 2000, 5125-32.

[8]

HauserD, SiggHP. Isolierung und Abbau von sordarin. 1. Mitteilung Über sordarin. Helv Chim Acta, 1971, 5441178-1190.

[9]

HuZ, SunW, LiF, GuanJ, LuY, LiuJ, TangY, DuG, XueY, LuoZ, WangJ, ZhuH, ZhangY. Fusicoccane-Derived diterpenoids from alternaria brassicicola: investigation of the Structure–Stability relationship and discovery of an IKKβ inhibitor. Org Lett, 2018, 20175198-5202.

[10]

JusticeMC, HsuM-J, TseB, KuT, BalkovecJ, SchmatzD, NielsenJ. Elongation factor 2 as a novel target for selective Inhibition of fungal protein synthesis**. J Biol Chem, 1998, 27363148-3151.

[11]

KinsmanOS, ChalkPA, JacksonHC, MiddletonRF, ShuttleworthA, RuddBA, JonesCA, NobleHM, WildmanHG, DawsonMJ, StylliC, SidebottomPJ, LamontB, LynnS, HayesMV. Isolation and characterisation of an antifungal antibiotic (GR135402) with protein synthesis Inhibition. J Antibiot (Tokyo), 1998, 51141-49.

[12]

KudoF, MatsuuraY, HayashiT, FukushimaM, EguchiT. Genome mining of the sordarin biosynthetic gene cluster from sordaria araneosa Cain ATCC 36386: characterization of Cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J Antibiot, 2016, 697541-548.

[13]

LiF, LinS, ZhangS, HaoX, LiX-N, YangB, LiuJ, WangJ, HuZ, ZhangY. Alterbrassinoids A–D: Fusicoccane-Derived diterpenoid dimers featuring different carbon skeletons from alternaria brassicicola. Org Lett, 2019, 21208353-8357.

[14]

LiQ, ZhengM, LiF, LiY, ChenC, HuangZ, LiuJ, SunW, YeY, ZhuH, ZhangY. Talarolactones A–G, α-Pyrone dimers with Anti-inflammatory activities from talaromyces adpressus, and their biosynthetic pathways. Org Lett, 2023, 25101616-1621.

[15]

LiF, LaiS, YuanW, ChenZ, GuanZ, ChenC, ZhuH, ZhouY, WinterJM, XiangZ, LiuJ, YeY, ZhangY. Conformational control in diterpene synthase TlnA: elucidating the mechanism of 5-8-6 skeleton formation through ring expansion. Org Lett, 2024, 2681734-1738.

[16]

LiangH. Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem, 2008, 4: 31.

[17]

LiangH, SchuléA, VorsJ-P, CiufoliniMA. An avenue to the sordarin core adaptable to analog synthesis. Org Lett, 2007, 9214119-4122.

[18]

LiuY, HongR. Recent total syntheses of fusicoccanes. Cell Rep Phys Sci, 2024, 59102141.

[19]

Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX, Ge HM (2022) Biosynthesis of sordarin revealing a Diels-Alderase for the formation of the Norbornene skeleton. Angew Chem Int Ed Engl 61(33):e202205577

[20]

Liu JY, Lin FL, Taizoumbe KA, Lv JM, Wang YH, Wang GQ, Chen GD, Yao XS, Hu D, Gao H, Dickschat JS (2024) A functional switch between asperfumene and Fusicoccadiene synthase and entrance to asperfumene biosynthesis through a vicinal Deprotonation-Reprotonation process. Angew Chem Int Ed Engl 63(38):e202407895

[21]

ManderLN, ThomsonRJ. Total synthesis of sordaricin. Org Lett, 2003, 581321-1324.

[22]

ManderLN, ThomsonRJ. Total synthesis of sordaricin. J Org Chem, 2005, 7051654-1670.

[23]

Zheng M, Zhao X, Zhou C, Liao H, Li Q, Lu Y, Dai B, Sun W, Ye Y, Chen C, Zhang Y, Zhu H (2024). (±)-Talapyrones A– F: Six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromyces adpressus. Chin J NatMed 22(0):1–8

[24]

NonakaK, IwatsukiM, HoriuchiS, ShiomiK, ŌmuraS, MasumaR. Induced production of BE-31405 by co-culturing of talaromyces siamensis FKA-61 with a variety of fungal strains. J Antibiot, 2015, 689573-578.

[25]

QiaoY, XuQ, HuangZ, ChenX, RenX, YuanW, GuanZ, LiP, LiF, XiongC, ZhuH, ChenC, GuL, ZhouY, QiC, HuZ, LiuJ, YeY, ZhangY. Genome mining reveals a new cyclopentane-forming sesterterpene synthase with unprecedented stereo-control. Org Chem Front, 2022, 9215808-5818.

[26]

SchuléA, LiangH, VorsJ-P, CiufoliniMA. Synthetic studies toward sordarin: Building blocks for the terpenoid core and for analogues thereof. J Org Chem, 2009, 7441587-1597.

[27]

ShaoY, MolestakE, SuW, StankevičM, TchórzewskiM. Sordarin— an anti-fungal antibiotic with a unique modus operandi. Br J Pharmacol, 2022, 17961125-1145.

[28]

SøeR, MosleyRT, JusticeM, Nielsen-KahnJ, ShastryM, MerrillAR, AndersenGR. Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2*. J Biol Chem, 2007, 2821657-666.

[29]

SunZ, JamiesonCS, OhashiM, HoukKN, TangY. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun, 2022, 1312568.

[30]

Sun Z, Zang X, Zhou Q, Ohashi M, Houk KN, Zhou J, Tang Y (2025) Iminium catalysis in natural Diels–Alderase. Nat Catal https://doi.org/10.1038/s41929-025-01294-w

[31]

TangY, XueY, DuG, WangJ, LiuJ, SunB, LiX-N, YaoG, LuoZ, ZhangY. Structural revisions of a class of natural products: scaffolds of Aglycon analogues of fusicoccins and cotylenins isolated from fungi. Angew Chem Int Ed, 2016, 55124069-4073.

[32]

TazawaA, YeY, OzakiT, LiuC, OgasawaraY, DairiT, HiguchiY, KatoN, GomiK, MinamiA, OikawaH. Total biosynthesis of brassicicenes: identification of a key enzyme for skeletal diversification. Org Lett, 2018, 20196178-6182.

[33]

WangJ, WolfRM, CaldwellJW, KollmanPA, CaseDA. Development and testing of a general amber force field. J Comput Chem, 2004, 2591157-1174.

[34]

WangT-C, MaiBK, ZhangZ, BoZ, LiJ, LiuP, YangY. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature, 2024, 629801098-104.

[35]

Xu Q, Qiao Y, Zhang Z, Deng Y, Chen T, Tao L, Xu Q, Liu J, Sun W, Ye Y, Lu Y, Qi C, Zhang Y (2021) New polyketides with Anti-Inflammatory activity from the fungus Aspergillus rugulosa. Front Pharmacol 12:700573

[36]

YeY, MinamiA, MandiA, LiuC, TaniguchiT, KuzuyamaT, MondeK, GomiK, OikawaH. Genome mining for sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes. J Am Chem Soc, 2015, 1373611846-11853.

[37]

YuanW, LiF, ChenZ, XuQ, GuanZ, YaoN, HuZ, LiuJ, ZhouY, YeY, ZhangY. AbnI: an α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chin Chem Lett, 2024, 355108788.

[38]

ZhangM, YanS, LiangY, ZhengM, WuZ, ZangY, YuM, SunW, LiuJ, YeY, WangJ, ChenC, ZhuH, ZhangY. Talaronoids A–D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/6 ring system from the fungus talaromyces stipitatus. Org Chem Front, 2020, 7213486-3492.

[39]

ZhangM, DengY, LiuF, ZhengM, LiangY, SunW, LiQ, LiX-N, QiC, LiuJ, ChenC, ZhuH, ZhangY. Five undescribed steroids from talaromyces stipitatus and their cytotoxic activities against hepatoma cell lines. Phytochemistry, 2021, 189: 112816.

[40]

ZhangP, WuG, HeardSC, NiuC, BellSA, LiF, YeY, ZhangY, WinterJM. Identification and characterization of a cryptic bifunctional type I diterpene synthase involved in talaronoid biosynthesis from a Marine-Derived fungus. Org Lett, 2022, 24387037-7041.

[41]

ZhengM, XiaoY, LiQ, LaiY, DaiB, ZhangM, KangX, TongQ, WangJ, ChenC, ZhuH, ZhangY. Cytotoxic ergosteroids from a strain of the fungus talaromyces adpressus. J Nat Prod, 2023, 8692081-2090.

[42]

ZhengM, LiQ, LiaoH, LiY, ZhouC, ZhaoX, ChenC, SunW, ZhangY, ZhuH. Adpressins A–G: Oligophenalenone dimers from talaromyces adpressus. J Nat Prod, 2024, 8781921-1929.

[43]

ZhengM, LiY, LiaoH, ZhouC, LiQ, ChenC, SunW, ZhangY, ZhuH. New Diarylcyclopentenone enantiomers and biphenyl derivatives from the fungus talaromyces adpressus. Bioorg Chem, 2024, 146: 107280.

Funding

National Natural Science Foundation of China(82404482)

Natural Science Foundation of Hubei Province(2024AFB260)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/