Optimized production of bacterioruberin from “Haloferax marinum” using one-factor-at-a-time and central composite design approaches

Eui-Sang Cho , Chi Young Hwang , Myung-Ji Seo

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 111

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 111 DOI: 10.1186/s40643-024-00834-9
Research

Optimized production of bacterioruberin from “Haloferax marinum” using one-factor-at-a-time and central composite design approaches

Author information +
History +
PDF

Abstract

Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C50 carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C50 carotenoids, primarily bacterioruberin, using “Haloferax marinum” MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.

Graphical Abstract

Cite this article

Download citation ▾
Eui-Sang Cho, Chi Young Hwang, Myung-Ji Seo. Optimized production of bacterioruberin from “Haloferax marinum” using one-factor-at-a-time and central composite design approaches. Bioresources and Bioprocessing, 2024, 11(1): 111 DOI:10.1186/s40643-024-00834-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbbesM, BaatiH, GuermaziS, MessinaC, SantulliA, GharsallahN, AmmarE. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Altern Med, 2013, 4(13): 255

[2]

AlcainoJ, BaezaM, CifuentesV. Carotenoid distribution in nature. Subcell Biochem, 2016, 79: 3-33

[3]

AugustinMA, HartleyCJ, MaloneyG, TyndallS. Innovation in precision fermentation for food ingredients. Crit Rev Food Sci Nutr, 2023, 64(18): 6218-6238

[4]

BanovicM, GrunertKG. Consumer acceptance of precision fermentation technology: A cross-cultural study. Innov Food Sci Emerg Technol, 2023, 88: 103435

[5]

BermanJ, Zorrilla-LópezU, FarréG, ZhuC, SandmannG, TwymanRM, CapellT, ChristouP. Nutritionally important carotenoids as consumer products. Phytochem Rev, 2015, 14: 727-743

[6]

BiswasJ, HaqueFN, PaulAK. Carotenogenesis in Haloferax Sp. Strain BKW301, a Halophilic Archaeon from Indian Solar Saltarns. J Adv Microbiol, 2017, 1(3): 1-11

[7]

Borowitzka MA (2010) Algae oils for biofuels: chemistry, physiology, and production. Single cell oils, 2nd edn. AOCS. https://doi.org/10.1016/B978-1-893997-73-8.50017-7

[8]

BurnsDG, JanssenPH, ItohT, MinegishiH, UsamiR, KamekuraM, Dyall-SmithML. Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol, 2010, 60(5): 1173-1176

[9]

CeledónRS, DíazLB. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms, 2021, 9(4): 739

[10]

ChenCW, HsuS, LinMT, HsuY. Mass production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brined medium. Bioprocess Biosyst Eng, 2015, 38(12): 2361-2367

[11]

Cho ES, Cha IT, Roh SW, Seo MJ (2021) Haloferax litoreum sp. nov., Haloferax marinisediminis sp. nov., and Haloferax marinum sp. nov., low salt-tolerant haloarchaea isolated from seawater and sediment. Antonie van Leeuwenhoek 114(12):2065–2082. https://doi.org/10.1007/s10482-021-01661-0

[12]

ChupromJ, BovornreungrojP, AhmadM, KantachoteD, DueramaeS. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnol Rep, 2016, 10: 17-28

[13]

CutzuR, CoiA, RossoF, BardiL, CianiM, BudroniM, ZaraG, ZaraS, MannazzuI. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol, 2013, 29: 1009-1017

[14]

de la VegaM, SayagoA, ArizaJ, BarnetoAG, LeónR. Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol Prog, 2016, 32(3): 592-600

[15]

EsclapezJ, CamachoM, PireC, BautistaV, VegaraA, Pedro-RoigL, Pérez-PomaresF, Martínez-EspinosaRM, BoneteMJ. RampelottoP. Recent Advances in the Nitrogen Metabolism in Haloarchaea and Its Biotechnological Applications. Biotechnology of Extremophiles: Grand Challenges in Biology and Biotechnology, 2016 Cambridge Springer

[16]

FallahiS, HabibiA, AbbasiS, SharifiR. Optimized fed-batch cultivation of Rhodotorula toruloides in a bubble column bioreactor progressed the β-carotene production from corn steep liquor. Braz J Microbiol, 2023, 54: 2719-2731

[17]

FangCJ, KuKL, LeeMH, SuNW. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour Technol, 2010, 101(16): 6487-6493

[18]

FloresN, HoyosS, VenegasM, Galetovi´cA, Zú˜nigaLM, F´abregaF, ParedesB, Salazar-ArdilesC, ViloC, AscasoC, WierzchosJ, Souza-EgipsyV, ArayaJE, Batista-GarcíaRA, G´omez-SilvaB. Haloterrigena sp. strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, atacama desert, Chile. Front Microbiol, 2020, 11: 324

[19]

ForjánE, NavarroF, CuaresmaM, VaqueroI, Ruíz-DomínguezMC, GojkovicŽ, VázquezM, MárquezM, MogedasB, BermejoE, GirlichS, DomínguezMJ, VílchezC, VegaJM, GarbayoI. Microalgae: Fast-growth sustainable green factories. Crit Rev Environ Sci Technol, 2015, 45(16): 1705-1755

[20]

GianiM, Martínez-EspinosaRM. Carotenoids as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidants, 2020, 9(11): 1060

[21]

GianiM, Montero-LobatoZ, GarbayoI, VílchezC, VegaJM, Martínez-EspinosaRM. Haloferax mediterranei cells as C50 carotenoid factories. Mar Drugs, 2021, 19(2): 100

[22]

GianiM, GervasiL, LoizzoMR, Martinez-EspinosaRM. Carbon source influences antioxidant, antiglycemic, and antilipidemic activities of Haloferax mediterranei carotenoid extracts. Mar Drugs, 2022, 20(11): 659

[23]

GuoX, ZouX, SunM. Optimization of a chemically defined medium for mycelial growth and polysaccharide production by medicinal mushroom Phellinus igniarius. World J Microbiol Biotechnol, 2009, 25: 2187-2193

[24]

HamidiM, AbdinMZ, NazemyiehH, HejaziMA, HejaziMS. Optimization of total carotenoid production by Halorubrum sp. TBZ126 using response surface methodology. J Microb Biochem Technol, 2014, 6(5): 286-294

[25]

HeiderSAE, Peters-WendischP, NetzerR, StafnesM, BrautasetT, WendischVF. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2014, 98: 1223-1235

[26]

HosenMA, HussainMA, MjalliFS. Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation. Control Eng Pract, 2011, 19(5): 454-467

[27]

HwangCY, ChoES, KimS, KimK, SeoMJ. Optimization of bacterioruberin production from Halorubrum ruber and assessment of its antioxidant potential. Microb Cell Fact, 2024, 23(1): 2

[28]

KesbiçFI, GültepeN. C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: antioxidant potential and identification. Folia Microbiol, 2022, 67(1): 71-79

[29]

KholanyM, Mac´arioIPE, VelosoT, ContieriLS, VazBMC, PereiraJL, NunesC, CoutinhoJAP, RostagnoMA, VenturaSPM, de Souza MesquitaLM. Bio-based solvents as a sustainable alternative to develop a multiproduct biorefinery process from archaebacteria Halobacterium salinarum R1. Green Chem, 2024, 26(5): 2793-2806

[30]

KumarV, TiwariSK. SatyanarayanaT, JohriB, DasS. Halocin Diversity Among Halophilic Archaea and Their Applications. Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications, 2019 Singapore Springer

[31]

LeeH, ChoE-S, HwangCY, CaoL, KimM-B, LeeSG, SeoMJ. Bacterioruberin extract from Haloarchaea Haloferax marinum: Component identification, antioxidant activity and anti-atrophy effect in LPS-treated C2C12 myotubes. Microb Biotechnol, 2024, 17: e70009

[32]

LiC, SwoffordCA, RückertC, ChatzivasileiouAO, OuRW, OpdensteinenP, LuttermannT, ZhouK, StephanopoulosG, Jones PratherKL, Zhong-JohnsonEZL, LiangS, ZhengS, LinY, SinskeyAJ. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. Bioresour Technol, 2021, 341: 125782

[33]

LiuSB, QiaoLP, HeHL, ZhangQ, ChenXL, ZhouWZ, ZhouBC, ZhangYZ. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS ONE, 2011, 6(11): e26825

[34]

MaYC, GaoMR, YangH, JiangJY, XieW, SuWP, ZhangB, YeongYS, GuoWY, SuiLY. Optimization of C50 carotenoids production by open fermentation of Halorubrum sp. HRM-150. Appl Biochem Biotechnol, 2023, 195(6): 3628-3640

[35]

MaY, SunZ, YangH, XieW, SongM, ZhangB, SuiL. The biosynthesis mechanism of bacterioruberin in halophilic archaea revealed by genome and transcriptome analysis. Appl Environ Microbiol, 2024, 90(7): e0054024

[36]

MandelliF, MirandaVS, RodriguesE, MercadanteAZ. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol, 2012, 28(4): 1781-1790

[37]

Montero-LobatoZ, Ramos-MerchanteA, FuentesJL, SayagoA, Fernandez-RecamalesA, Martinez-EspinosaRM, VegaJM, VilchezC, GarbayoI. Optimization of growth and carotenoid production by Haloferax mediterranei using response surface methodology. Mar Drugs, 2018, 16(10): 372

[38]

OrenA. Industrial and environmental applications of halophilic microorganisms. Environ Technol, 2010, 31: 825-834

[39]

PaliwalC, MitraM, BhayaniK, BharadwajSVV, GhoshT, DubeyS, MishraS. Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol, 2017, 244: 1216-1226

[40]

Prasath CS, Sivadas CA, Chandran CH, Suchithra TV (2024) Precision fermentation of sustainable products in the food industry. In Entrepreneurship with microorganisms (pp. 163–177). Academic Press. https://doi.org/10.1016/B978-0-443-19049-0.00020-7

[41]

RamS, PaliwalC, MishraS. Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. Bioresour Technol Rep, 2019, 7: 100194

[42]

RamS, MitraM, ShahF, TirkeySR, MishraS. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods, 2020, 67: 103867

[43]

SerinoI, SquillaciG, ErrichielloS, CarboneV, BaraldiL, La CaraF, MoranaA. Antioxidant capacity of carotenoid extracts from the Haloarchaeon Halorhabdus utahensis. Antioxidants, 2023, 12(10): 1840

[44]

ShahbaziS, ZargarM, ZolfaghariMR, AmoozegarMA. Carotenoid pigment of Halophilic archaeon Haloarcula sp. A15 induces apoptosis of breast cancer cells. Cell Biochem Funct, 2023, 41(3): 344-354

[45]

SquillaciG, ParrellaR, CarboneV, MinasiP, La CaraF, MoranaA. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity. Extremophiles, 2017, 21(5): 933-945

[46]

Vázquez-MadrigalAS, Barbachano-TorresA, Arellano-PlazaM, KirchmayrMR, FinoreI, PoliA, NicolausB, De la Torre ZavalaS, Camacho-RuizRM. Effect of carbon sources in carotenoid production from Haloarcula sp. M1, Halolamina sp. M3 and Halorubrum sp. M5, halophilic archaea isolated from Sonora saltern. Mexico Microorganisms, 2021, 9(5): 1096

[47]

XuY, IbrahimIM, WosuCI, Ben-AmotzA, HarveyPJ. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production. Biology, 2018, 7(1): 14

[48]

YatsunamiR, AndoA, YangY, TakaichiS, KohnoM, MatsumuraY, IkedaH, FukuiT, NakasoneK, FujitaN, SekineM, TakashinaT, NakamuraS. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol, 2014, 5: 100

[49]

ZhangZX, XuLW, XuYS, LiJ, MaW, SunXM, HuangH. Integration of genetic engineering and multi-factor fermentation optimization for co-production of carotenoid and DHA in Schizochytrium sp. Bioresour Technol, 2024, 394: 130250

Funding

National Research Foundation of Korea(2022R1F1A1062699)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/