Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy

Jihad El-Qassas , Mahmoud Abd El-Atti , Nagwa El-Badri

Bioresources and Bioprocessing ››

PDF
Bioresources and Bioprocessing ›› DOI: 10.1186/s40643-024-00805-0
Review

Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy

Author information +
History +
PDF

Abstract

Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients’ survival and wellbeing.

Cite this article

Download citation ▾
Jihad El-Qassas, Mahmoud Abd El-Atti, Nagwa El-Badri. Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy. Bioresources and Bioprocessing DOI:10.1186/s40643-024-00805-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion venom: detriments and benefits. Biomedicines, 2020,

[2]

Al Asmari AK, Khan AQ. Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development. Drug Des Devel Ther, 2016, 10: 3387-3397,

[3]

Al-Asmari AK, Islam M, Al-Zahrani AM. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol Lett, 2016, 11(2): 1256-1262,

[4]

Al-Asmari AK, Riyasdeen A, Abbasmanthiri R, Arshaduddin M, Al-Harthi FA. Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines. Indian J Pharmacol, 2016, 48(5): 537-543,

[5]

Al-Asmari AK, Riyasdeen A, Islam M. Scorpion venom causes apoptosis by increasing reactive oxygen species and cell cycle arrest in MDA-MB-231 and HCT-8 cancer cell lines. J Evid Based Integr Med, 2018, 23: 2156587217751796,

[6]

Al-Asmari AK, Riyasdeen A, Islam M. Scorpion venom causes upregulation of p53 and downregulation of Bcl-x(L) and BID protein expression by modulating signaling proteins Erk(1/2) and STAT3, and DNA damage in breast and colorectal cancer cell lines. Integr Cancer Ther, 2018, 17(2): 271-281,

[7]

Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides, 2014, 51: 35-45,

[8]

Almeida FM, Pimenta AM, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon, 2002, 40(7): 1041-1045,

[9]

Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S. Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast, 2022, 66: 15-23.

[10]

Aydar E, Yeo S, Djamgoz M, Palmer C. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int, 2009, 9: 23, PMCID: 2737535

[11]

Bernardes-Oliveira E, Farias KJS, Gomes DL, de Araújo JMG, da Silva WD, Rocha HAO, Donadi EA, Fernandes-Pedrosa MF, Crispim JCO. Tityus serrulatus scorpion venom induces apoptosis in cervical cancer cell lines. Evid Based Complement Alternat Med, 2019, 2019: 5131042, PMCID: 6612397

[12]

Boltman T, Meyer M, Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers, 2023, PMCID: 10341066

[13]

Bordon KCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol, 2020, 11: 1132, PMCID: 7396678

[14]

Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin), 2012, 6(5): 352-361,

[15]

Brisson L, Driffort V, Benoist L, Poet M, Counillon L, Antelmi E, Rubino R, Besson P, Labbal F, Chevalier S, Reshkin SJ, Gore J, Roger S. NaV15 Na⁺ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci, 2013, 126(Pt21): 4835-4842,

[16]

Bustin SA, Li SR, Dorudi S. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol, 2001, 20(6): 331-338,

[17]

Capatina AL, Lagos D, Brackenbury WJ. Targeting ion channels for cancer treatment: current progress and future challenges. Rev Physiol Biochem Pharmacol, 2022, 183: 1-43,

[18]

Carmona G, Perera U, Gillett C, Naba A, Law AL, Sharma VP, Wang J, Wyckoff J, Balsamo M, Mosis F, De Piano M, Monypenny J, Woodman N, McConnell RE, Mouneimne G, Van Hemelrijck M, Cao Y, Condeelis J, Hynes RO, Gertler FB, Krause M. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene, 2016, 35(39): 5155-5169, PMCID: 5031503

[19]

Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother, 2020, 127,

[20]

Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, Zhou Q, Zhao C, Hu C, Lu W, Cao P. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic 99analgesia in inflammatory pain models. J Ethnopharmacol, 2022, 288,

[21]

Chung S, Sugimoto Y, Huang J, Zhang M. Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells. ACS Appl Mater Interfaces, 2023, 15(1): 106-119,

[22]

Cloudsley-Thompson JL (1993). Scorpions in mythology, folklore, and history. BOll. ACC. GIOENIA SCI. NAT. 26(345):53–63

[23]

Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón YCS, Hernández-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol, 2013, 4: 283, PMCID: 3794381

[24]

Comes N, Serrano-Albarrás A, Capera J, Serrano-Novillo C, Condom E, Ramón YCS, Ferreres JC, Felipe A. Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta, 2015, 1848(10PtB): 2477-2492,

[25]

Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Diseas, 2015, 21(00): 00-00

[26]

Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop, 2015, 48(6): 642-649.

[27]

Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E, De Waard M. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel), 2015, 7(4): 1079-1101,

[28]

DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol, 1993, 264(2 Pt 1): C361-369,

[29]

Desales-Salazar E, Khusro A, Cipriano-Salazar M, Barbabosa-Pliego A, Rivas-Caceres RR. Scorpion venoms and associated toxins as anticancer agents: update on their application and mechanism of action. J Appl Toxicol, 2020, 40(10): 1310-1324,

[30]

Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem, 2003, 278(6): 4135-4144,

[31]

Ding J, Chua PJ, Bay BH, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med, 2014, 239(4): 387-393,

[32]

D'Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon, 2010, 56(8): 1497-1505,

[33]

Du Q, Hou X, Wang L, Zhang Y, Xi X, Wang H, Zhou M, Duan J, Wei M, Chen T. AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins, 2015, 7(2): 219-237. PMCID: 4344621

[34]

Dueñas-Cuellar RA, Kushmerick C, Naves LA, Batista IF, Guerrero-Vargas JA, Pires OR Jr, Fontes W, Castro MS. Cm38: a new antimicrobial peptide active against Klebsiella pneumoniae is homologous to Cn11. Protein Pept Lett, 2015, 22(2): 164-172,

[35]

Dueñas-Cuellar RA, Santana CJC, Magalhães ACM, Pires OR Jr, Fontes W, Castro MS. Scorpion toxins and ion channels: potential applications in cancer therapy. Toxins, 2020, PMCID: 7290751

[36]

El-Ghlban S, Kasai T, Shigehiro T, Yin HX, Sekhar S, Ida M, Sanchez A, Mizutani A, Kudoh T, Murakami H, Seno M (2014) Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. Biomed Res Int 2014:152659. https://doi.org/10.1155/2014/152659

[37]

Escárcega RO, Fuentes-Alexandro S, García-Carrasco M, Gatica A, Zamora A. The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (r Coll Radiol), 2007, 19(2): 154-161.

[38]

Feng L, Gao R, Gopalakrishnakone P. Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. Comp Biochem Physiol C Toxicol Pharmacol, 2008, 148(3): 250-257,

[39]

Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol, 2015, 33: 291-353, PMCID: 4822408

[40]

Fu YJ, Yin LT, Liang AH, Zhang CF, Wang W, Chai BF, Yang JY, Fan XJ. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci Lett, 2007, 412(1): 62-67,

[41]

Fu YJ, An N, Chan KG, Wu YB, Zheng SH, Liang AH. A model of BmK CT in inhibiting glioma cell migration via matrix metalloproteinase-2 from experimental and molecular dynamics simulation study. Biotechnol Lett, 2011, 33(7): 1309-1317,

[42]

Fu Y, An N, Li K, Zheng Y, Liang A. Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs. J Neurooncol, 2012, 107(3): 457-462,

[43]

Gao B, Xu J, Rodriguez Mdel C, Lanz-Mendoza H, Hernández-Rivas R, Du W, Zhu S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 2010, 92(4): 350-359,

[44]

Giangiacomo KM, Ceralde Y, Mullmann TJ. Molecular basis of alpha-KTx specificity. Toxicon, 2004, 43(8): 877-886,

[45]

Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon, 2002, 40(9): 1239-1258,

[46]

Griffin M, Khan R, Basu S, Smith S. Ion channels as therapeutic targets in high grade gliomas. Cancers, 2020,

[47]

Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K(V) 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev, 2021, 41(4): 2423-2473,

[48]

Guilhelmelli F, Vilela N, Smidt KS, de Oliveira MA, da Cunha Morales Álvares A, Rigonatto MC, da Silva Costa PH, Tavares AH, de Freitas SM, Nicola AM, Franco OL, Derengowski LD, Schwartz EF, Mortari MR, Bocca AL, Albuquerque P, Silva-Pereira I. Activity of scorpion venom-derived antifungal peptides against planktonic cells of Candida spp. and Cryptococcus neoformans and Candida albicans biofilms. Front Microbiol, 2016, 7: 1844,

[49]

Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T, Shaw C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie, 2013, 95(9): 1784-1794,

[50]

Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem Biol Interact, 2010, 183(2): 293-303,

[51]

Han X, Wang F, Yao W, Xing H, Weng D, Song X, Chen G, Xi L, Zhu T, Zhou J, Xu G, Wang S, Meng L, Iadecola C, Wang G, Ma D. Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis, 2007, 12(10): 1837-1846,

[52]

Harrison PL, Abdel-Rahman MA, Strong PN, Tawfik MM, Miller K. Characterisation of three alpha-helical antimicrobial peptides from the venom of scorpio maurus palmatus. Toxicon, 2016, 117: 30-36,

[53]

Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene, 2006, 25(51): 6758-6780,

[54]

Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics, 2016, 107(1): 1-8,

[55]

Heinen TE, da Veiga AB. Arthropod venoms and cancer. Toxicon, 2011, 57(4): 497-511,

[56]

Helms LM, Felix JP, Bugianesi RM, Garcia ML, Stevens S, Leonard RJ, Knaus HG, Koch R, Wanner SG, Kaczorowski GJ, Slaughter RS. Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells. Biochemistry, 1997, 36(12): 3737-3744,

[57]

Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol, 2013, 2013,

[58]

Huang J, Han S, Sun Q, Zhao Y, Liu J, Yuan X, Mao W, Peng B, Liu W, Yin J, He X. Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis. Cell Biosci, 2017, 7: 31,

[59]

Inceoglu B, Lango J, Rabinovich A, Whetstone P, Hammock BD. The neutralizing effect of a polyclonal antibody raised against the n-terminal eighteen-aminoacid residues of birtoxin towards the whole venom of Parabuthus transvaalicus. Toxicon, 2006, 47(2): 144-149,

[60]

Jacobs BA, Chetty A, Horsnell WGC, Schäfer G, Prince S, Smith KA. Hookworm exposure decreases human papillomavirus uptake and cervical cancer cell migration through systemic regulation of epithelial-mesenchymal transition marker expression. Sci Rep, 2018, 8(1): 11547,

[61]

Jacoby DB, Dyskin E, Yalcin M, Kesavan K, Dahlberg W, Ratliff J, Johnson EW, Mousa SA. Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res, 2010, 30(1): 39-46

[62]

Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol, 2011, 651(1–3): 26-32,

[63]

de Jesus Oliveira T, Oliveira UC, da Silva Junior PI. Serrulin: A glycine-rich bioactive peptide from the Hemolymph of the yellow Tityus serrulatus scorpion. Toxins (Basel), 2019,

[64]

Jia Z, Zhu X, Zhou Y, Wu J, Cao M, Hu C, Yu L, Xu R, Chen Z. Polypeptides from traditional Chinese medicine: comprehensive review of perspective towards cancer management. Int J Biol Macromol, 2024,

[65]

Jian D (2014) Screening and evaluation of the anticancer potential of scorpion venoms and snake venom l-amino acid oxidase in gastric cancer. https://scholarbank.nus.edu.sg/handle/10635/119451

[66]

Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol Med Chir, 2018, 58(10): 405-421.

[67]

Kampo S, Ahmmed B, Zhou T, Owusu L, Anabah TW, Doudou NR, Kuugbee ED, Cui Y, Lu Z, Yan Q, Wen QP. Scorpion venom analgesic peptide, BmK AGAP inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front Oncol, 2019, 9: 21,

[68]

Kheirandish Zarandi P, Zare Mirakabadi A, Sotoodehnejadnematalahi F. Cytotoxic and anticancer effects of ICD-85 (venom derived peptides) in human breast adenocarcinoma and normal human dermal fibroblasts. Iran J Pharm Res, 2019, 18(1): 232-240

[69]

Krawczyk A, Arndt MA, Grosse-Hovest L, Weichert W, Giebel B, Dittmer U, Hengel H, Jäger D, Schneweis KE, Eis-Hübinger AM, Roggendorf M, Krauss J. Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc Natl Acad Sci U S A, 2013, 110(17): 6760-6765.

[70]

Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev, 2018, 133: 107-130,

[71]

Li W, Xin Y, Chen Y, Li X, Zhang C, Bai J, Yuan J. The anti-proliferative effects and mechanisms of low molecular weight scorpion BmK venom peptides on human hepatoma and cervical carcinoma cells in vitro. Oncol Lett, 2014, 8(4): 1581-1584.

[72]

Li B, Lyu P, Xi X, Ge L, Mahadevappa R, Shaw C, Kwok HF. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide-gonearrestide. J Cell Mol Med, 2018, 22(9): 4460-4473,

[73]

Li Z, Hu P, Wu W, Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides, 2019, 115: 43-50,

[74]

Li J, Zeng H, You Y, Wang R, Tan T, Wang W, Yin L, Zeng Z, Zeng Y, Xie T. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J Nanobiotechnology, 2021, 19(1): 289,

[75]

Ling C, Zhang Y, Li J, Chen W, Ling C. Clinical use of toxic proteins and peptides from tian hua fen and scorpion venom. Curr Protein Pept Sci, 2019, 20(3): 285-295,

[76]

Lippens G, Najib J, Wodak SJ, Tartar A. NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels. Biochemistry, 1995, 34(1): 13-21,

[77]

Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with dual antimicrobial-anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules, 2020,

[78]

Liu YF, Hu J, Zhang JH, Wang SL, Wu CF. Isolation, purification, and n-terminal partial sequence of an antitumor peptide from the venom of the Chinese scorpion Buthus martensii Karsch. Prep Biochem Biotechnol, 2002, 32(4): 317-327,

[79]

Luna-Ramirez K, Tonk M, Rahnamaeian M, Vilcinskas A. Bioactivity of natural and engineered antimicrobial peptides from venom of the scorpions Urodacus yaschenkoi and U. manicatus. Toxins, 2017,

[80]

Lyons SA, O'Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39(2): 162-173.

[81]

Machado RJ, Estrela AB, Nascimento AK, Melo MM, Torres-Rêgo M, Lima EO, Rocha HA, Carvalho E, Silva-Junior AA, Fernandes-Pedrosa MF. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: structure, cytotoxicity and antimicrobial activity. Toxicon, 2016, 119: 362-370,

[82]

McFerrin MB, Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol, 2006, 2(1): 39-49. PMCID: 1389710

[83]

de Melo ET, Estrela AB, Santos EC, Machado PR, Farias KJ, Torres TM, Carvalho E, Lima JP, Silva-Júnior AA, Barbosa EG, Fernandes-Pedrosa Mde F. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides, 2015, 68: 3-10,

[84]

Mendes LC, Viana GMM, Nencioni ALA, Pimenta DC, Beraldo-Neto E. Scorpion peptides and ion channels: an insightful review of mechanisms and drug development. Toxins, 2023,

[85]

Mikaelian AG, Traboulay E, Zhang XM, Yeritsyan E, Pedersen PL, Ko YH, Matalka KZ. Pleiotropic anticancer properties of scorpion venom peptides: rhopalurus princeps venom as an anticancer agent. Drug Des Devel Ther, 2020, 14: 881-893,

[86]

Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol, 2021, 16(1): 36,

[87]

Monge-Fuentes V, Gomes FM, Campos GA, Silva Jde C, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxin Incl Trop Dis, 2015, 21: 31,

[88]

Northcott PA, Dubuc AM, Pfister S, Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother, 2012, 12(7): 871-884,

[89]

Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, Güth U, Zlobec I, Sausbier M, Kunzelmann K, Bubendorf L. Role of KCNMA1 in breast cancer. PLoS ONE, 2012, 7(8,

[90]

Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon, 2015, 93: 125-135,

[91]

Ouadid-Ahidouch H, Roudbaraki M, Ahidouch A, Delcourt P, Prevarskaya N. Cell-cycle-dependent expression of the large Ca2 ± activated K+ channels in breast cancer cells. Biochem Biophys Res Commun, 2004, 316(1): 244-251,

[92]

Padilla-Rodriguez M, Parker SS, Adams DG, Westerling T, Puleo JI, Watson AW, Hill SM, Noon M, Gaudin R, Aaron J, Tong D, Roe DJ, Knudsen B, Mouneimne G. The actin cytoskeletal architecture of estrogen receptor positive breast cancer cells suppresses invasion. Nat Commun, 2018, 9(1): 2980, PMCID: 6065369

[93]

Padmanabhan M, Prince PS. Preventive effect of S-allylcysteine on lipid peroxides and antioxidants in normal and isoproterenol-induced cardiotoxicity in rats: a histopathological study. Toxicology, 2006, 224(1–2): 128-137,

[94]

Parente AMS, Daniele-Silva A, Furtado AA, Melo MA, Lacerda AF, Queiroz M, Moreno C, Santos E, Rocha HAO, Barbosa EG, Carvalho E, Silva-Júnior AA, Silva MS, Fernandes-Pedrosa MF. Analogs of the scorpion venom peptide Stigmurin: structural assessment, toxicity, and increased antimicrobial activity. Toxins, 2018, PMCID: 5923327

[95]

Pedersen SF, Stock C. Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res, 2013, 73(6): 1658-1661,

[96]

Pedron CN, Torres MT, Lima J, Silva PI, Silva FD, Oliveira VX. Novel designed VmCT1 analogs with increased antimicrobial activity. Eur J Med Chem, 2017, 126: 456-463,

[97]

Pessini AC, Takao TT, Cavalheiro EC, Vichnewski W, Sampaio SV, Giglio JR, Arantes EC. A hyaluronidase from Tityus serrulatus scorpion venom: isolation, characterization and inhibition by flavonoids. Toxicon, 2001, 39(10): 1495-1504,

[98]

Petricevich VL. Cytokine and nitric oxide production following severe envenomation. Curr Drug Targets Inflamm Allergy, 2004, 3(3): 325-332,

[99]

Possani LD, Merino E, Corona M, Bolivar F, Becerril B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie, 2000, 82(9–10): 861-868,

[100]

Pucca MB, Bertolini TB, Cerni FA, Bordon KC, Peigneur S, Tytgat J, Bonato VL, Arantes EC. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology, 2016, 147(2): 240-250, PMCID: 4717234

[101]

Qin C, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, Wang G, Yin L, Zhang Q. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Mol Pharm, 2014, 11(10): 3233-3241,

[102]

Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon, 2013, 76: 328-342. PMCID: 4089097

[103]

Ramírez A, Vera E, Gamboa-Domínguez A, Lambert P, Gariglio P, Camacho J. Calcium-activated potassium channels as potential early markers of human cervical cancer. Oncol Lett, 2018, 15(5): 7249-7254, PMCID: 5920501

[104]

Rizzo A, Santoni M, Mollica V, Fiorentino M, Brandi G, Massari F. Microbiota and prostate cancer. Semin Cancer Biol, 2022, 86(Pt 3): 1058-1065,

[105]

Rjeibi I, Mabrouk K, Mosrati H, Berenguer C, Mejdoub H, Villard C, Laffitte D, Bertin D, Ouafik LH, Luis J, ElAyeb M, Srairi-Abid N. Purification, synthesis and characterization of AaCtx, the first chlorotoxin-like peptide from Androctonus australis scorpion venom. Peptides, 2011, 32(4): 656-663,

[106]

Romo Vaquero M, Yáñez-Gascón MJ, García Villalba R, Larrosa M, Fromentin E, Ibarra A, Roller M, Tomás-Barberán F, Espín de Gea JC, García-Conesa MT. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS ONE, 2012, 7(6, PMCID: 3382157

[107]

Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genom, 2010, 11: 452,

[108]

Salem ML, Shoukry NM, Teleb WK, Abdel-Daim MM, Abdel-Rahman MA. In vitro and in vivo antitumor effects of the Egyptian scorpion Androctonus amoreuxi venom in an Ehrlich ascites tumor model. Springerplus, 2016, 5: 570, PMCID: 4864766

[109]

Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal activity against filamentous fungi of Ts1, a multifunctional toxin from Tityus serrulatus scorpion venom. Front Microbiol, 2017, 8: 984, PMCID: 5459920

[110]

Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis, 1996, 14(1): 35-42,

[111]

Shahzadi SK, Karuvantevida N, Banerjee Y. A venomics approach to the identification and characterization of bioactive peptides from animal venoms for colorectal cancer therapy: protocol for a proof-of-concept study. JMIR Res Protoc, 2021, 10(12,

[112]

Shao J-H, Cui Y, Zhao M-Y, Wu C-F, Liu Y-F, Zhang J-H. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides, 2014, 53: 89-96,

[113]

Simone Y, van der Meijden A. Armed stem to stinger: a review of the ecological roles of scorpion weapons. J Venom Anim Toxins Incl Trop Dis, 2021, 27,

[114]

Soleglad ME, Fet V. High-level systematics and phylogeny of the extant scorpions (scorpiones: orthosterni). Euscorpius, 2003, 2003(11): 1-56

[115]

Song X, Zhang G, Sun A, Guo J, Tian Z, Wang H, Liu Y. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells. Exp Ther Med, 2012, 4(1): 146-150.

[116]

Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med, 2008, 233(7): 779-791,

[117]

Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res, 1998, 58(21): 4871-4879

[118]

Soroceanu L, Manning TJ Jr, Sontheimer H. Modulation of glioma cell migration and invasion using Cl(–) and K(+) ion channel blockers. J Neurosci, 1999, 19(14): 5942-5954,

[119]

Srairi-Abid N, Othman H, Aissaoui D, BenAissa R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium, 2019, 80: 160-174,

[120]

Symeonidou I, Arsenopoulos K, Tzilves D, Soba B, Gabriël S, Papadopoulos E. Human taeniasis/cysticercosis: a potentially emerging parasitic disease in Europe. Ann Gastroenterol, 2018, 31(4): 406-412. PMCID: 6033766

[121]

Tewarie IA, Senders JT, Kremer S, Devi S, Gormley WB, Arnaout O, Smith TR, Broekman MLD. Survival prediction of glioblastoma patients-are we there yet? A systematic review of prognostic modeling for glioblastoma and its clinical potential. Neurosurg Rev, 2021, 44(4): 2047-2057.

[122]

Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nuc Acid Res, 2012,

[123]

Ullrich N, Sontheimer H. Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am J Physiol, 1996, 270(5Pt1): C1511-1521,

[124]

Uzair B, Bint EIS, Khan BA, Azad B, Mahmood T, Rehman MU, Braga VA. Scorpion venom peptides as a potential source for human drug candidates. Protein Pept Lett, 2018, 25(7): 702-708,

[125]

Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res, 2007, 67(14): 6882-6888,

[126]

Wang Y, Li K, Han S, Tian YH, Hu PC, Xu XL, He YQ, Pan WT, Gao Y, Zhang Z, Zhang JW, Wei L. Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer. Cancer Med, 2019, 8(4): 1679-1693,

[127]

Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 2018, 151: 137-155,

[128]

Wu XS, Jian XC, Yin B, He ZJ. Development of the research on the application of chlorotoxin in imaging diagnostics and targeted therapies for tumors. Chin J Cancer, 2010, 29(6): 626-630,

[129]

Wu S, Ma K, Qiao WL, Zhao LZ, Liu CC, Guo LL, Xing Y, Zhu ML, Zhao JH. Anti-metastatic effect of 131I-labeled Buthus martensii Karsch chlorotoxin in gliomas. Int J Mol Med, 2018, 42(6): 3386-3394, PMCID: 6202110

[130]

Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp Mol Pathol, 2011, 91(1): 447-454,

[131]

Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem, 2011, 348(1–2): 173-181,

[132]

Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol Vitro, 2011, 25(8): 1748-1756,

[133]

Zerouti K, Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin Rev, 2021, 40(3): 310-324,

[134]

Zhang YY, Wu LC, Wang ZP, Wang ZX, Jia Q, Jiang GS, Zhang WD. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. J Clin Med Res, 2009, 1(1): 24-31,

[135]

Zhao Y, Cai X, Ye T, Huo J, Liu C, Zhang S, Cao P. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells. J Cell Biochem, 2011, 112(9): 2424-2434,

[136]

Zhao Y, Huang J, Yuan X, Peng B, Liu W, Han S, He X. Toxins targeting the Kv1.3 channel: potential immunomodulators for autoimmune diseases. Toxins, 2015, 7(5): 1749-1764,

[137]

Zhou XH, Yang D, Zhang JH, Liu CM, Lei KJ. Purification and n-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem J, 1989, 257(2): 509-517,

Funding

Zewail City of Science & Technology,

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/