Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) biosynthesized by metabolically engineered E. coli

Binghao Zhang , Pengye Guo , Xinye Sun , Yanzhe Shang , Yuanchan Luo , Hui Wu

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 88

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 88 DOI: 10.1186/s40643-024-00803-2
Research

Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) biosynthesized by metabolically engineered E. coli

Author information +
History +
PDF

Abstract

Poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] is a high-molecular-weight biomaterial with excellent biocompatibility and biodegradability. In this study, the properties of P(LA-co-3HB) were examined and found to be affected by its lactate fraction. The efficiency of lactyl-CoA biosynthesis from intracellular lactate significantly affected the microbial synthesis of P(LA-co-3HB). Two CoA transferases from Anaerotignum lactatifermentans and Bacillota bacterium were selected for use in copolymer biosynthesis from 11 candidates. We found that cotAl enhanced the lactate fraction by 31.56% compared to that of the frequently used modified form of propionyl-CoA transferase from Anaerotignum propionicum. In addition, utilizing xylose as a favorable carbon source and blocking the lactate degradation pathway further enhanced the lactate fraction to 30.42 mol% and 52.84 mol%, respectively. Furthermore, when a 5 L bioreactor was used for fermentation utilizing xylose as a carbon source, the engineered strain produced 60.60 wt% P(46.40 mol% LA-co-3HB), which was similar to the results of our flask experiments. Our results indicate that the application of new CoA transferases has great potential for the biosynthesis of other lactate-based copolymers.

Keywords

Poly(lactate-co-3-hydroxybutyrate) / Lactyl-CoA / CoA transferases / Lactate-based copolymers

Cite this article

Download citation ▾
Binghao Zhang, Pengye Guo, Xinye Sun, Yanzhe Shang, Yuanchan Luo, Hui Wu. Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) biosynthesized by metabolically engineered E. coli. Bioresources and Bioprocessing, 2024, 11(1): 88 DOI:10.1186/s40643-024-00803-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali S, Lodhi FS, Ahmad MU, Khan QF, Asad ur R, Ahmed A, Liaqat I, Aftab MN, Shah TA, Salamatullah AM, Wondmie GF, Bourhia M. Kinetics and synthesis of poly(3-hydroxybutyrate) by a putative-mutant of Bacillus licheniformis. Bioresources Bioprocess, 2024, 11(1): 41.

[2]

Balasubramanian S, Chandrasekran P, Yesudhas AJR, Ganapathyraman P, Eiteman MA, Subramanian R. In vivo interpretation of model predicted inhibition in acrylate pathway engineered Lactococcus lactis. Biotechnol Bioeng, 2020, 117(12): 3785-3798.

[3]

Baur T, Wentzel A, Dürre P. Production of propionate using metabolically engineered strains of Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol, 2022, 106(22): 7547-7562.

[4]

Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, Lee SY. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol, 2016, 34(4): 435-440.

[5]

Choi SY, Rhie MN, Kim HT, Joo JC, Cho IJ, Son J, Jo SY, Sohn YJ, Baritugo K-A, Pyo J, Lee Y, Lee SY, Park SJ. Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng, 2020, 58: 47-81.

[6]

Chun AY, Yunxiao L, Ashok S, Seol E, Park S. Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnol Bioprocess Eng, 2014, 19(5): 858-865.

[7]

David Y, Joo JC, Yang JE, Oh YH, Lee SY, Park SJ. Biosynthesis of 2-Hydroxyacid-containing polyhydroxyalkanoates by employing butyryl-CoA transferases in metabolically Engineered Escherichia coli. Biotechnol J, 2017, 12(11): 1700116.

[8]

Dong H, Zhang J, Zhang H, Han Y, Lu C, Chen C, Tan X, Wang S, Bai X, Zhai G, Tian S, Zhang T, Cheng Z, Li E, Xu L, Zhang K. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun, 2022, 13(1): 6628.

[9]

Dundas CM, Dinneny JR (2022) Genetic circuit design in Rhizobacteria. BioDesign Res 2022:9858049. https://doi.org/10.34133/2022/9858049

[10]

Dym O, Pratt EA, Ho C, Eisenberg D. The crystal structure of d-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci, 2000, 97(17): 9413-9418.

[11]

Ganesh Saratale R, Cho S-K, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Kim S, Mulla D, Shin S. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour Technol, 2021, 325: 124685.

[12]

Gonzalez JE, Long CP, Antoniewicz MR. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metab Eng, 2017, 39: 9-18.

[13]

Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. Bioresources Bioprocess, 2021, 8(1): 106.

[14]

Hackmann TJ. Redefining the coenzyme a transferase superfamily with a large set of manually annotated proteins. Protein Sci, 2022, 31(4): 864-881.

[15]

Jin KY, Chae CG, Joo JC, Song B-K, Lee SY. Biosynthesis of lactate-containing polyhydroxyalkanoates in recombinant Escherichia coli by employing new CoA transferases. Korean Soc Biotechnol Bioeng J, 2016, 31(1): 27-32.

[16]

Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran KB, Buckel W, Jayaraman G, Ramalingam S. Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol, 2013, 97(3): 1191-1200.

[17]

Lajus S, Dusséaux S, Verbeke J, Rigouin C, Guo Z, Fatarova M, Bellvert F, Borsenberger V, Bressy M, Nicaud J-M, Marty A, Bordes F (2020) Engineering the yeast Yarrowia Lipolytica for production of polylactic acid homopolymer. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00954.

[18]

Lee J-W, Trinh CT. Microbial biosynthesis of lactate esters. Biotechnol Biofuels, 2019, 12(1): 226.

[19]

Li Z-J, Qiao K, Shi W, Pereira B, Zhang H, Olsen BD, Stephanopoulos G. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab Eng, 2016, 35: 1-8.

[20]

Li Z-J, Qiao K, Che X-M, Stephanopoulos G (2017) Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 44:38–44. https://doi.org/10.1016/j.ymben.2017.09.003

[21]

Liao X-P, Wu Q, Zong M-H, Li N. A straightforward chemobiocatalytic route for one-pot valorization of glucose into 2,5-bis(hydroxymethyl)furan. Bioresources Bioprocess, 2024, 11(1): 38.

[22]

Lindenkamp N, Schürmann M, Steinbüchel A. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Appl Microbiol Biotechnol, 2013, 97(17): 7699-7709.

[23]

Lu J, Li Z, Ye Q, Wu H. Effect of reducing the activity of respiratory chain on biosynthesis of poly(3-hydroxybutyrate-co-lactate) in Escherichia coli. Chin J Biotechnol, 2019, 35(1): 59-69.

[24]

Lv X, Xue H, Qin L, Li C. Transporter Engineering in Microbial Cell Factory boosts Biomanufacturing Capacity. BioDesign Res, 2022, 2022: 9871087.

[25]

Matsumoto K, i., Iijima M, Hori C, Utsunomia C, Ooi T, Taguchi S. In Vitro Analysis of d-Lactyl-CoA-Polymerizing polyhydroxyalkanoate synthase in Polylactate and poly(lactate-co-3-hydroxybutyrate) syntheses. Biomacromolecules, 2018, 19(7): 2889-2895.

[26]

Medeiros Garcia Alcântara J, Distante F, Storti G, Moscatelli D, Morbidelli M, Sponchioni M. Current trends in the production of biodegradable bioplastics: the case of polyhydroxyalkanoates. Biotechnol Adv, 2020, 42: 107582.

[27]

Morgan-Kiss RM, Cronan JE. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem, 2004, 279(36): 37324-37333.

[28]

Nduko JM, Matsumoto Ki, Ooi T, Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng, 2013, 15: 159-166.

[29]

Nduko JM, Matsumoto Ki, Ooi T, Taguchi S. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol, 2014, 98(6): 2453-2460.

[30]

Niu W, Guo J. Stereospecific Microbial Conversion of Lactic Acid into 1,2-Propanediol. ACS Synth Biol, 2015, 4(4): 378-382.

[31]

Niu W, Kramer L, Mueller J, Liu K, Guo J. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metabolic Eng Commun, 2019, 8: e00082.

[32]

Okano H, Hermsen R, Hwa T. Hierarchical and simultaneous utilization of carbon substrates: mechanistic insights, physiological roles, and ecological consequences. Curr Opin Microbiol, 2021, 63: 172-178.

[33]

Park H, He H, Yan X, Liu X, Scrutton NS, Chen G-Q. PHA is not just a bioplastic!. Biotechnol Adv, 2024, 71: 108320.

[34]

Rangarajan ES, Li Y, Ajamian E, Iannuzzi P, Kernaghan SD, Fraser ME, Cygler M, Matte A. Crystallographic trapping of the Glutamyl-CoA Thioester Intermediate of Family I CoA transferases. J Biol Chem, 2005, 280(52): 42919-42928.

[35]

Ren J-y, Liu G, Chen Y-f, Jiang S, Ma Y-r, Zheng P, Guo X-w, Xiao D-g. Enhanced production of Ethyl Lactate in Saccharomyces cerevisiae by genetic modification. J Agric Food Chem, 2020, 68(47): 13863-13870.

[36]

Shi M, Li M, Yang A, Miao X, Yang L, Pandhal J, Zou H (2022) Class I polyhydroxyalkanoate (PHA) synthase increased polylactic acid production in engineered Escherichia coli. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.919969

[37]

Taguchi S, Yamada M, Matsumoto Ki, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci, 2008, 105(45): 17323-17327.

[38]

Tan C, Tao F, Xu P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories [10.1039/D1GC04188F]. Green Chem, 2022, 24(11): 4470-4483.

[39]

Volodina E, Schürmann M, Lindenkamp N, Steinbüchel A. Characterization of propionate CoA-transferase from Ralstonia eutropha H16. Appl Microbiol Biotechnol, 2014, 98(8): 3579-3589.

[40]

Wang L, Yuan H, Li W, Yan P, Zhao M, Li Z, Zhao H, Wang S, Wan R, Li Y, Yang J, Pan X, Rosas I, Yu G. ACSS3 regulates the metabolic homeostasis of epithelial cells and alleviates pulmonary fibrosis. Biochim et Biophys Acta (BBA) - Mol Basis Disease, 2024, 1870(2): 166960.

[41]

Wei X, Wu J, Guo P, Zhou S, Wu H. Effect of short-chain thioesterase deficiency on P(3HB-co-LA) biosynthesis in Escherichia coli. Chin J Biotechnol, 2021, 37(1): 196-206.

[42]

Wu J, Wei X, Guo P, He A, Xu J, Jin M, Zhang Y, Wu H. Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol, 2021, 341: 125873.

[43]

Wu J, Gong X, Sun X, Guo P, Luo Y, Wu H. Fine-tuning biosynthesis of biodegradable poly(3-hydroxybutyrate-co-lactate) with different ratios of d-Lactate from Xylose by Engineered Escherichia coli. ACS Sustain Chem Eng, 2023, 11(41): 15043-15051.

[44]

Yamada M, Matsumoto Ki, Uramoto S, Motohashi R, Abe H, Taguchi S. Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol, 2011, 154(4): 255-260.

[45]

Yang TH, Kim TW, Kang HO, Lee S-H, Lee EJ, Lim S-C, Oh SO, Song A-J, Park SJ, Lee SY. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng, 2010, 105(1): 150-160.

[46]

Ylinen A, Maaheimo H, Anghelescu-Hakala A, Penttilä M, Salusjärvi L, Toivari M. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol, 2021, 48(5–6): kuab028.

[47]

Yoshimura Y, Araki A, Maruta H, Takahashi Y, Yamashita H. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix. J Biochem, 2017, 161(3): 279-289.

[48]

Yukesh Kannah R, Dinesh Kumar M, Kavitha S, Banu R, Kumar Tyagi J, Rajaguru V, Kumar G. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams – A review. Bioresour Technol, 2022, 366: 128203.

[49]

Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol, 2019, 46(7): 899-909.

[50]

Zhong W, Li H, Wang Y. Design and construction of Artificial Biological systems for one-Carbon utilization. BioDesign Res, 2023, 5: 0021.

Funding

National Natural Science Foundation of China(22278137)

National Key R&D Program of China(2021YFC2103500)

Open Funding Project of the State Key Laboratory of Bioreactor Engineering(Open Funding Project of the State Key Laboratory of Bioreactor Engineering)

AI Summary AI Mindmap
PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/