Monitoring corn stover processing by the fungus Ustilago maydis

Stefan Robertz , Magnus Philipp , Kerstin Schipper , Paul Richter , Katharina Miebach , Jorgen Magnus , Markus Pauly , Vicente Ramírez

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 87

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 87 DOI: 10.1186/s40643-024-00802-3
Research

Monitoring corn stover processing by the fungus Ustilago maydis

Author information +
History +
PDF

Abstract

A key aspect of sustainable bioeconomy is the recirculation of renewable, agricultural waste streams as substrates for microbial production of high-value compounds. One approach is the bioconversion of corn stover, an abundant maize crop byproduct, using the fungal maize pathogen Ustilago maydis. U. maydis is already used as a unicellular biocatalyst in the production of several industrially-relevant compounds using plant biomass hydrolysates. In this study, we demonstrate that U. maydis can grow using untreated corn stover as its sole carbon source. We developed a small-scale bioreactor platform to investigate U. maydis processing of corn stover, combining online monitoring of fungal growth and metabolic activity profiles with biochemical analyses of the pre- and post-fermentation residues. Our results reveal that U. maydis primarily utilizes soluble sugars i.e., glucose, sucrose and fructose present in corn stover, with only limited exploitation of the abundant lignocellulosic carbohydrates. Thus, we further explored the biotechnological potential of enhancing U. maydis´ lignocellulosic utilization. Additive performance improvements of up to 120 % were achieved when using a maize mutant with increased biomass digestibility, co-fermentation with a commercial cellulolytic enzyme cocktail, and exploiting engineered fungal strains expressing diverse lignocellulose-degrading enzymes. This work represents a key step towards scaling up the production of sustainable compounds from corn stover using U. maydis and provides a tool for the detailed monitoring of the fungal processing of plant biomass substrates.

Keywords

Lignocellulose utilization / Corn stover / Ustilago maydis / Bioconversion / Online monitoring

Cite this article

Download citation ▾
Stefan Robertz, Magnus Philipp, Kerstin Schipper, Paul Richter, Katharina Miebach, Jorgen Magnus, Markus Pauly, Vicente Ramírez. Monitoring corn stover processing by the fungus Ustilago maydis. Bioresources and Bioprocessing, 2024, 11(1): 87 DOI:10.1186/s40643-024-00802-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baloch RI, Mercer EI, Wiggins TE, Baldwin BC. Inhibition of ergosterol biosynthesis in saccharomyces cerevisiae and Ustilago maydis by tridemorph, fenpropimorph and fenpropidin. Phytochemistry, 1984, 23: 2219-2226.

[2]

Beck A, Zibek S. Growth behavior of selected ustilaginaceae fungi used for mannosylerythritol lipid (MEL) biosurfactant production – evaluation of a defined culture medium. Front Bioeng Biotechnol, 2020

[3]

Brefort T, Doehlemann G, Mendoza-Mendoza A, . Ustilago maydis as a pathogen. Annu Rev Phytopathol, 2009, 47: 423-445.

[4]

Cano-Canchola C, Acevedo L, Ponce-Noyola P, . Induction of lytic enzymes by the interaction of Ustilago maydis with zea mays tissues. Fungal Genet Biol, 2000, 29: 145-151.

[5]

Christensen CSL, Rasmussen SK. Low lignin mutants and reduction of lignin content in grasses for increased utilisation of lignocellulose. Agronomy, 2019, 9: 256.

[6]

Couturier M, Navarro D, Olivé C, . Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics, 2012

[7]

Doehlemann G, Wahl R, Vranes M, . Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol, 2008, 165: 29-40.

[8]

Drula E, Garron ML, Dogan S, . The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res, 2022, 50: D571-D577.

[9]

Feldbrügge M, Kellner R, Schipper K. The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol, 2013, 97: 3253-3265.

[10]

Flitsch D, Krabbe S, Ladner T, . Respiration activity monitoring system for any individual well of a 48-well microtiter plate. J Biol Eng, 2016

[11]

Foster CE, Martin TM, Pauly M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: Lignin. J vis Exp, 2010

[12]

Foster CE, Martin TM, Pauly M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part II: Carbohydrates. J vis Exp, 2010

[13]

Gao Y, Lipton AS, Wittmer Y, . A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls. Nat Commun, 2020

[14]

Geiser E, Reindl M, Blank LM, . Activating intrinsic carbohydrate-active enzymes of the smut fungus Ustilago maydis for the degradation of plant cell wall components. Appl Environ Microbiol, 2016, 82: 5174-5185.

[15]

Geiser E, Wiebach V, Wierckx N, Blank LM. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol, 2014, 1: 1-10.

[16]

Geiser E, Wierckx N, Zimmermann M, Blank LM. Identification of an endo-1,4-beta-xylanase of Ustilago maydis. BMC Biotechnol, 2013, 13: 1.

[17]

Hartmann SK, Stockdreher Y, Wandrey G, . Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis. Biochim Biophys Acta - Bioenerg, 2018, 1859: 1015-1024.

[18]

Hatfield RD, Rancour DM, Marita JM. Grass cell walls: A story of cross-linking. Front Plant Sci, 2017, 7.

[19]

Holliday R. Ustilago maydis. Bact Bacteriophages, Fungi, 1974, 93: 575-595.

[20]

Janusz G, Pawlik A, Sulej J, . Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev, 2017, 41: 941-962.

[21]

Kämper J, Kahmann R, Bölker M, . Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444: 97-101.

[22]

Kraemer FJ, Lunde C, Koch M, . A mixed-linkage (1,3;1,4)-b-D-glucan specific hydrolase mediates dark-triggered degradation of this plant cell wall polysaccharide. Plant Physiol, 2021, 185: 1559-1573.

[23]

Kunze M, Roth S, Gartz E, Büchs J. Pitfalls in optical on-line monitoring for high-throughput screening of microbial systems. Microb Cell Fact, 2014

[24]

Ladner T, Held M, Flitsch D, . Quasi-continuous parallel online scattered light, fluorescence and dissolved oxygen tension measurement combined with monitoring of the oxygen transfer rate in each well of a shaken microtiter plate. Microb Cell Fact, 2016, 15: 1-15.

[25]

Mueller O, Kahmann R, Aguilar G, . The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol, 2008

[26]

Müller MJ, Stachurski S, Stoffels P, . Online evaluation of the metabolic activity of Ustilago maydis on (poly)galacturonic acid. J Biol Eng, 2018, 12: 1-17.

[27]

Paulino BN, Pessôa MG, Molina G, . Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl Microbiol Biotechnol, 2017, 101: 7789-7809.

[28]

Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J, 2008, 54: 559-568.

[29]

Perrot T, Pauly M, Ramírez V. Emerging roles of β-glucanases in plant development and adaptative responses. Plants, 2022

[30]

Ramírez V, Xiong G, Mashiguchi K, . Growth- and stress-related defects associated with wall hypoacetylation are strigolactone-dependent. Plant Direct, 2018

[31]

Regestein L, Klement T, Grande P, . From beech wood to itaconic acid: Case study on biorefinery process integration. Biotechnol Biofuels, 2018, 11: 1-11.

[32]

Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol, 2014, 26: 100-107.

[33]

Lou RJ, Grisel S, Haon M, . The maize pathogen ustilago maydis secretes glycoside hydrolases and carbohydrate oxidases directed toward components of the fungal cell wall. Appl Environ Microbiol, 2022

[34]

Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM, . Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers’ spent grain. Bioresour Bioprocess, 2022, 9: 1-9.

[35]

Samorski M, Müller-Newen G, Büchs J. Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnol Bioeng, 2005, 92: 61-68.

[36]

Santoro N, Cantu SL, Tornqvist CE, . A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility. Bioenergy Res, 2010, 3: 93-102.

[37]

Schauwecker F, Kahmann R, Wanner G. Filament-Specific Expression of a Cellulase Gene in the Dimorphic Fungus Ustilago maydis. Biol Chem, 1995, 376: 617-626.

[38]

Schlembach I, Hosseinpour Tehrani H, Blank LM, . Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnol Biofuels, 2020

[39]

Spellig T, Bottin A, Kahmann R. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet, 1996, 252: 503-509.

[40]

Stock J, Sarkari P, Kreibich S, . Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol, 2012, 161: 80-91.

[41]

Terfrüchte M, Wewetzer S, Sarkari P, . Tackling destructive proteolysis of unconventionally secreted heterologous proteins in Ustilago maydis. J Biotechnol, 2018, 284: 37-51.

[42]

Verbruggen MA, Beldman G, Voragen AGJ. Enzymic degradation of sorghum glucuronoarabinoxylans leading to tentative structures. Carbohydr Res, 1998, 306: 275-282.

[43]

Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol, 2008, 11: 301-307.

[44]

Volkmar M, Maus AL, Weisbrodt M, . Municipal green waste as substrate for the microbial production of platform chemicals. Bioresour Bioprocess, 2023

[45]

Wang S, Robertz S, Seven M, . A large-scale forward genetic screen for maize mutants with altered lignocellulosic properties. Front Plant Sci, 2023, 14: 1-12.

[46]

Wierckx N, Miebach K, Ihling N, . Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem, 2021, 65: 365.

[47]

Zambanini T, Hosseinpour Tehrani H, Geiser E, . Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels, 2017, 10: 1-15.

Funding

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen("NextVegOil” 2021_04)

Bundesministerium für Bildung und Forschung(“Cornwall)

Deutsche Forschungsgemeinschaft(390686111)

H2020 Marie Skłodowska-Curie Actions(PIOF‐GA‐2013‐623553)

Heinrich-Heine-Universität Düsseldorf (3102)

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/