Engineering of fast-growing Vibrio natriegens for biosynthesis of poly(3-hydroxybutyrate-co-lactate)

Xinye Sun , Yanzhe Shang , Binghao Zhang , Pengye Guo , Yuanchan Luo , Hui Wu

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 86

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 86 DOI: 10.1186/s40643-024-00801-4
Research

Engineering of fast-growing Vibrio natriegens for biosynthesis of poly(3-hydroxybutyrate-co-lactate)

Author information +
History +
PDF

Abstract

Poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] is a highly promising valuable biodegradable material with good biocompatibility and degradability. Vibrio natriegens, owing to its fast-growth, wide substrate spectrum characteristics, was selected to produce P(3HB-co-LA). Herein, the crucial role of acetyltransferase PN96-18060 for PHB synthesis in V. natriegens was identified. Heterologous pathway of P(3HB-co-LA) was introduced into V. natriegens successfully, in addition, overexpression of the dldh gene led to 1.84 fold enhancement of the lactate content in P(3HB-co-LA). Finally, the production of P(3HB-co-LA) was characterized under different carbon sources. The lactate fraction in P(3HB-co-LA) was increased to 28.3 mol% by the modification, about 1.84 times of that of the control. This is the first successful case of producing the P(3HB-co-LA) in V. natriegens. Collectively, this study showed that V. natriegens is an attractive host organism for producing P(3HB-co-LA) and has great potential to produce other co-polymers.

Keywords

Poly(3-hydroxybutyrate-co-lactate) / Vibrio natriegens / Metabolic engineering / Lactate fraction

Cite this article

Download citation ▾
Xinye Sun, Yanzhe Shang, Binghao Zhang, Pengye Guo, Yuanchan Luo, Hui Wu. Engineering of fast-growing Vibrio natriegens for biosynthesis of poly(3-hydroxybutyrate-co-lactate). Bioresources and Bioprocessing, 2024, 11(1): 86 DOI:10.1186/s40643-024-00801-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali S, Lodhi FS, Ahmad MU, Khan QF, Asad ur R, Ahmed A, Liaqat I, Aftab MN, Shah TA, Salamatullah AM, Wondmie GF, Bourhia M. Kinetics and synthesis of poly(3-hydroxybutyrate) by a putative-mutant of Bacillus licheniformis. Bioresour Bioprocess, 2024, 11(1): 41.

[2]

Cao Y, Chen Z, Boukhir M, Dong B, Zhang J, Gu S, Zhang S (2024) Insight into the pyrolysis of bamboo flour, polylactic acid and their composite: pyrolysis behavior, kinetic triplets, and thermodynamic parameters based on Fraser-Suzuki deconvolution procedure. Bioresour Technol 391. https://doi.org/10.1016/j.biortech.2023.129932

[3]

Daisuke I, Kenji T (2017) Ken’ichiro, Matsumoto, Toshihiko, Ooi, Takaaki, Hikima Effect of monomeric composition on the thermal, mechanical and crystalline properties of poly[(R)-lactate-co®3-hydroxybutyrate]. https://doi.org/10.1016/j.polymer.2017.06.039

[4]

Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. Multiplex genome editing by Natural Transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth Biol, 2017, 6(9): 1650-1655.

[5]

Dan T, Jing H, Shen T, Zhu J, Liu Y (2023) Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. Bioresour Technol 385. https://doi.org/10.1016/j.biortech.2023.129165

[6]

Gao D, Liu T, Gao J, Xu J, Gou Y, Pan Y, Li D, Ye C, Pan R, Huang L, Xu Z, Lian J. De Novo Biosynthesis of Vindoline and Catharanthine in Saccharomyces cerevisiae. BioDesign Res, 2022

[7]

Gnaim R, Unis R, Gnayem N, Das J, Gozin M, Golberg A (2022) Turning mannitol-rich agricultural waste to poly(3-hydroxybutyrate) with Cobetia amphilecti fermentation and recovery with methyl levulinate as a green solvent. Bioresour Technol 352. https://doi.org/10.1016/j.biortech.2022.127075

[8]

Guo P, Luo Y, Wu J, Wu H (2021) Recent advances in the microbial synthesis of lactate-based copolymer. Bioresour Bioprocess 8(1). https://doi.org/10.1186/s40643-021-00458-3

[9]

Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ Microbiol, 2020

[10]

Jung YK, Kim TY, Park SJ, Lee SY. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng, 2010, 105(1): 161-171.

[11]

Kwon G, Cho D-W, Park J, Bhatnagar A, Song H. A review of plastic pollution and their treatment technology: a circular economy platform by thermochemical pathway. Chem Eng J 464, 2023

[12]

Langsdorf A, Volkmar M, Holtmann D, Ulber R. Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess, 2021, 8(1): 19.

[13]

Lee HH, Ostrov N, Wong BG, Gold MA, Khalil A, Church GM (2016) Vibrio natriegens, a new genomic powerhouse. https://doi.org/10.1101/058487

[14]

Lee HK, Woo S, Baek D, Min M, Jung GY, Lim HG (2024) Direct and robust citramalate production from brown macroalgae using fast-growing Vibrio sp. dhg. Bioresour Technol 394. https://doi.org/10.1016/j.biortech.2024.130304

[15]

Lu H, Yuan G, Strauss SH, Tschaplinski TJ, Tuskan GA, Chen J-G, Yang X (2020) Reconfiguring plant metabolism for biodegradable plastic production. Biodes Res 2020(https://doi.org/10.34133/2020/9078303

[16]

Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in E. Coli. Biotechnol Bioeng, 1990, 35(7): 732-738.

[17]

McAdam B, Brennan Fournet M, McDonald P, Mojicevic M (2020) Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 12(12). https://doi.org/10.3390/polym12122908

[18]

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res, 1999, 27(1): 29-34.

[19]

Shi Z, Liu P, Liao X, Mao Z, Zhang J, Wang Q, Sun J, Ma H, Ma Y (2022) Data-driven synthetic cell factories development for Industrial Biomanufacturing. https://doi.org/10.34133/2022/9898461. BioDesign Research 2022(9898461.

[20]

Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R (2020) Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour Technol 311. https://doi.org/10.1016/j.biortech.2020.123536

[21]

Song Y, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, Taguchi S. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol, 2012, 93(5): 1917-1925.

[22]

Ta D-T, Chiang C-J, Huang Z-X, Luu N-L, Chao Y-P (2023) High production of poly(3-hydroxybutyrate) in Escherichia coli using crude glycerol. Bioresour Technol 384. https://doi.org/10.1016/j.biortech.2023.129315

[23]

Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A, 2008, 105(45): 17323-17327.

[24]

Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM (2020) Agrobacterium tumefaciens: A bacterium primed for synthetic biology. Biodes Res 2020(https://doi.org/10.34133/2020/8189219

[25]

Tran TT, Charles TC. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer. Can J Microbiol, 2016, 62(2): 130-138.

[26]

Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods, 2016, 13(10): 849-851.

[27]

Wu J, Wei X, Guo P, He A, Xu J, Jin M, Zhang Y, Wu H (2021) Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol 341. https://doi.org/10.1016/j.biortech.2021.125873

[28]

Yamada M, Matsumoto Ki, Uramoto S, Motohashi R, Abe H, Taguchi S. Lactate fraction dependent mechanical properties of semitransparent poly (lactate-co-3-hydroxybutyrate) s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotech, 2011, 154(4): 255-260.

[29]

Zhang L, Lin X, Wang T, Guo W, Lu Y. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis. Bioresour Bioprocess, 2021, 8(1): 58.

[30]

Zhang Y, Sun Q, Liu Y, Cen X, Liu D, Chen Z. Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate. Bioresour Bioprocess, 2021, 8(1): 125.

[31]

Zhou Y, Shen B, You S, Yin Q, Wang M, Jiang N, Su R, Qi W (2024) Development of a novel 4E polyethylene terephthalate bio-recycling process with the potential for industrial application: efficient, economical, energy-saving, and eco-friendly. Bioresour Technol 391. https://doi.org/10.1016/j.biortech.2023.129913

Funding

the National Natural Science Foundation of China(22278137)

the National Key R&D Program of China(2021YFC2103500)

Open Funding Project of the State Key Laboratory of Bioreactor Engineering(Open Funding Project of the State Key Laboratory of Bioreactor Engineering)

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/