Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications

Chen Li , Hui Wang , Benwei Zhu , Zhong Yao , Limin Ning

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 85

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 85 DOI: 10.1186/s40643-024-00800-5
Review

Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications

Author information +
History +
PDF

Abstract

Abstract

With the proceeding of global warming and water eutrophication, the phenomenon of green tide has garnered significant societal interest. Consequently, researchers had increasingly focused on the potential applications of green algae biomass, particularly its polysaccharides. The polysaccharide serves as the primary active constituent of green algae and has demonstrated numerous advantageous biological activities, including antioxidant, antiviral, anticoagulant, hypolipidemic and immuno-modulatory activities. The favorable bioavailability and solubility of green algae oligosaccharides are attributed to their low molecular weight. So there has been a growing interest in researching green algae polysaccharides and oligosaccharides for the utilization of marine biological resources. This review summarized the extraction, purification, chemical structure, composition, biological activity, and potential applications prospect of polysaccharides and oligosaccharides derived from green algae. The review could be helpful for expanding the applications of polysaccharides and oligosaccharides of green algae.

Keywords

Green algae polysaccharide / Oligosaccharide / Structure / Extraction / Activity

Cite this article

Download citation ▾
Chen Li, Hui Wang, Benwei Zhu, Zhong Yao, Limin Ning. Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications. Bioresources and Bioprocessing, 2024, 11(1): 85 DOI:10.1186/s40643-024-00800-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd-Ellatef G-EF, Ahmed OM, Abdel-Reheim ES, Abdel-Hamid A-HZ. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation, 2017, Breast Cancer: Targets Ther, 67-83.

[2]

Adrien A, Dufour D, Baudouin S, Maugard T, Bridiau N. Evaluation of the anticoagulant potential of polysaccharide-rich fractions extracted from macroalgae. Nat Prod Res, 2017, 31(18): 2126-2136.

[3]

Adrien A, Bonnet A, Dufour D, Baudouin S, Maugard T, Bridiau N. Anticoagulant activity of sulfated ulvan isolated from the green macroalga Ulva rigida. Mar Drugs, 2019, 17(5): 291.

[4]

Ajarem JS, Maodaa SN, Allam AA, Taher MM, Khalaf M (2021) Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J Cluster Sci: 1–12

[5]

Aneiros AA, Garateix. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B: Anal Technol Biomed Life Sci, 2004, 803(1): 41-53.

[6]

Athukorala Y, Lee KW, Kim SK, Jeon YJ. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol, 2007, 98(9): 1711-1716.

[7]

Barakat KM, Ismail MM, Abou El Hassayeb HE, El Sersy NA, Elshobary ME. Chemical characterization and biological activities of ulvan extracted from Ulva fasciata (Chlorophyta). Rend Lincei Scienze Fis E Naturali, 2022, 33(4): 829-841.

[8]

Benslima A, Sellimi S, Hamdi M, Nasri R, Jridi M, Cot D, Li S, Nasri M, Zouari N. The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Biosci, 2021, 40: 100873.

[9]

Berri M, Olivier M, Holbert S, Dupont J, Demais H, Le Goff M, Collen PN. Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Res, 2017, 28: 39-47.

[10]

Bobin-Dubigeon C, Lahaye M, Guillon F, Barry JL, Gallant DJ. Factors limiting the biodegradation of Ulva Sp cell‐wall polysaccharides. J Sci Food Agric, 1997, 75(3): 341-351.

[11]

Chattopadhyay K, Mandal P, Lerouge P, Driouich A, Ghosal P, Ray B. Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales, Chlorophyta): isolation and structural features. Food Chem, 2007, 104(3): 928-935.

[12]

Chen Y, Liu Y, Sarker MMR, Yan X, Yang C, Zhao L, Lv X, Liu B, Zhao C. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydr Polym, 2018, 198: 452-461.

[13]

Chen J, Zeng W, Gan J, Li Y, Pan Y, Li J, Chen H. Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res, 2021, 55: 102269.

[14]

Chen J, Zeng W, Gan J, Li Y, Pan Y, Li J, Chen H (2021a) Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res 55

[15]

Chi Y, Li H, Wang P, Du C, Ye H, Zuo S, Guan H, Wang P. Structural characterization of ulvan extracted from Ulva Clathrata assisted by an ulvan lyase. Carbohydr Polym, 2020, 229: 115497.

[16]

Chi Y, Zhang M, Wang X, Fu X, Guan H, Wang P. Ulvan lyase assisted structural characterization of ulvan from Ulva pertusa and its antiviral activity against vesicular stomatitis virus. Int J Biol Macromol, 2020, 157: 75-82.

[17]

Chi Y, Li H, Fan L, Du C, Zhang J, Guan H, Wang P, Li R. Metal-ion-binding properties of ulvan extracted from Ulva Clathrata and structural characterization of its complexes. Carbohydr Polym, 2021, 272: 118508.

[18]

Coelho MS, Menezes BdS, Meza SLR, Gianasi BL, M. d. l. M., Salas-Mellado M, Copertino M. d. R. A. Z. de Souza (2016) Potential Utilization of Green Tide-Forming Macroalgae from Patos Lagoon, Rio Grande-RS, Brazil. J Aquat Food Prod Technol 25(7): 1096–1106

[19]

Collén PN, Sassi J-F, Rogniaux H, Marfaing H, Helbert W. Ulvan lyases isolated from the flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. J Biol Chem, 2011, 286(49): 42063-42071.

[20]

Cui J, Li Y, Wang S, Chi Y, Hwang H, Wang P. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks. Sci Rep, 2018, 8(1): 3062.

[21]

de Carvalho MM, Noseda MD, Dallagnol JC, Ferreira LG, Ducatti DR, Gonçalves AG, de Freitas RA, Duarte MER. Conformational analysis of ulvans from Ulva fasciata and their anticoagulant polycarboxylic derivatives. Int J Biol Macromol, 2020, 162: 599-608.

[22]

Fan Q, Shi K, Zhan M, Xu Q, Liu X, Li Z, Liu H, Xia Y, Chen Y, Shi X. Acute damage from the degradation of Ulva prolifera on the environmental microbiota, intestinal microbiota and transcriptome of Japanese flounder Paralichthys olivaceus. Environ Pollut, 2022, 302: 119022.

[23]

Fernandes H, Salgado JM, Martins N, Peres H, Oliva-Teles A, Belo I. Sequential bioprocessing of Ulva rigida to produce lignocellulolytic enzymes and to improve its nutritional value as aquaculture feed. Bioresour Technol, 2019, 281: 277-285.

[24]

Fernández-Díaz C, Coste O, Malta E-j. Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. Algal Res, 2017, 26: 135-142.

[25]

Foran E, Buravenkov V, Kopel M, Mizrahi N, Shoshani S, Helbert W, Banin E. Functional characterization of a novel ulvan utilization loci found in Alteromonas sp. LOR genome. Algal Res, 2017, 25: 39-46.

[26]

Fournière M, Latire T, Lang M, Terme N, Bourgougnon N, Bedoux G. Production of active poly-and oligosaccharidic fractions from Ulva sp. by combining enzyme-assisted extraction (EAE) and depolymerization. Metabolites, 2019, 9(9): 182.

[27]

Gao G, Clare AS, Rose C, Caldwell GS. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar Pollut Bull, 2017, 114(1): 439-447.

[28]

Gao J, Du C, Chi Y, Zuo S, Ye H, Wang P. Cloning, expression, and characterization of a new PL25 family ulvan lyase from marine bacterium Alteromonas sp. A321. Mar Drugs, 2019, 17(10): 568.

[29]

Gao X, Qu H, Shan S, Song C, Baranenko D, Li Y, Lu W. A novel polysaccharide isolated from Ulva Pertusa: structure and physicochemical property. Carbohydr Polym, 2020, 233: 115849.

[30]

Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology, 2009, 19(1): 2-15.

[31]

Glasson CR, K IM, Sims SM, Carnachan R, de Nys M, Magnusson. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva Ohnoi. Algal Res, 2017, 27: 383-391.

[32]

Glasson CRK, Luiten CA, Carnachan SM, Daines AM, Kidgell JT, Hinkley SFR, Praeger C, Andrade Martinez M, Sargison L, Magnusson M, de Nys R, Sims IM. Structural characterization of ulvans extracted from blade (Ulva Ohnoi) and filamentous (Ulva Tepida and Ulva prolifera) species of cultivated Ulva. Int J Biol Macromol, 2022, 194: 571-579.

[33]

Guidara M, Yaich H, Richel A, Blecker C, Boufi S, Attia H, Garna H. Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. Int J Biol Macromol, 2019, 135: 647-658.

[34]

Guo LY, Chen. Optimization of ultrasonic-assisted extraction of polysaccharides from Enteromorpha Prolifera by response surface methodology. Food Sci, 2010, 31: 117-121.

[35]

Han Y, Wu Y, Li G, Li M, Yan R, Xu Z, Lei H, Sun Y, Duan X, Hu L. Structural characterization and transcript-metabolite correlation network of immunostimulatory effects of sulfated polysaccharides from green alga Ulva pertusa. Food Chem, 2021, 342: 128537.

[36]

Hardouin K, Bedoux G, Burlot A-S, Donnay-Moreno C, Bergé J-P, Nyvall-Collén P, Bourgougnon N. Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res, 2016, 16: 233-239.

[37]

He J, Xu Y, Chen H, Sun P. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int J Biol Macromol, 2016, 17(12): 1988.

[38]

He C, Muramatsu H, Kato SI, Ohnishi K. Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva Ohnoi. Biosci Biotechnol Biochem, 2017, 81(11): 2145-2151.

[39]

Huang G, Mei X, Hu J. The antioxidant activities of natural polysaccharides. Curr Drug Targets, 2017, 18(11): 1296-1300.

[40]

Ji G, Yu G, Wu J, Zhao X, Yang B, Wang L, Mei X. Extraction, isolation and physiochemical character studies of polysaccharides from Enteromorpha clathrata in outbreak period. Chin J Mar Drugs, 2009, 28: 7-12.

[41]

Jiang N, Li B, Wang X, Xu X, Liu X, Li W, Chang X, Li H, Qi H. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. Int J Biol Macromol, 2020, 145: 1059-1065.

[42]

Jiang F, Chi Z, Ding Y, Quan M, Tian Y, Shi J, Song F, Liu C. Wound dressing hydrogel of enteromorpha prolifera polysaccharide–polyacrylamide composite: a facile transformation of marine blooming into biomedical material. ACS Appl Mater Interfaces, 2021, 13(12): 14530-14542.

[43]

Jiao L, Li X, Li T, Jiang P, Zhang L, Wu M, Zhang L. Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol, 2009, 9(3): 324-329.

[44]

Jin W, He X, Long L, Fang Q, Wei B, Sun J, Zhang W, Wang H, Zhang F, Linhardt RJ. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr Polym, 2020, 237: 116143.

[45]

Jmel MA, Anders N, Messaoud GB, Marzouki MN, Spiess A, Smaali I. The stranded macroalga Ulva lactuca as a new alternative source of cellulose: extraction, physicochemical and rheological characterization. J Clean Prod, 2019, 234: 1421-1427.

[46]

Kidgell JT, Magnusson M, de Nys R, Glasson CR. Ulvan: a systematic review of extraction, composition and function. Algal Res, 2019, 39: 101422.

[47]

Kidgell JT, Glasson CR, Magnusson M, Vamvounis G, Sims IM, Carnachan SM, Hinkley SF, Lopata AL, de Nys R, Taki AC. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int J Biol Macromol, 2020, 150: 839-848.

[48]

Kidgell JT, Carnachan SM, Magnusson M, Lawton RJ, Sims IM, Hinkley SF, de Nys R, Glasson CR. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr Polym, 2021, 264: 118010.

[49]

Kim S-KI, Wijesekara. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods, 2010, 2(1): 1-9.

[50]

Kim JK, Cho ML, Karnjanapratum S, Shin IS, You SG. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol, 2011, 49(5): 1051-1058.

[51]

Klongklaew N, Praiboon J, Tamtin M, Srisapoome P. Antibacterial and antiviral activities of local Thai green macroalgae crude extracts in pacific white shrimp (Litopenaeus vannamei). Mar Drugs, 2020, 18(3): 140.

[52]

Komatsu T, Kido N, Sugiyama T, Yokochi T. Antiviral activity of acidic polysaccharides from Coccomyxa Gloeobotrydiformi, a green alga, against an in vitro human influenza a virus infection. Immunopharmacol Immunotoxicol, 2013, 35(1): 1-7.

[53]

Kopel M, Helbert W, Belnik Y, Buravenkov V, Herman A, Banin E. New family of ulvan lyases identified in three isolates from the Alteromonadales order. J Biol Chem, 2016, 291(11): 5871-5878.

[54]

Lahaye MA, Robic. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 2007, 8(6): 1765-1774.

[55]

Lee J-B, Hayashi K, Hayashi T, Sankawa U, Maeda M. Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Med, 1999, 65(05): 439-441.

[56]

Li Y, Wang J, Yu Y, Li X, Jiang X, Hwang H, Wang P. Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera. Carbohydr Polym, 2013, 98(1): 988-994.

[57]

Li H, Li J, Zhao Z. Optimization of enzyme-assisted extraction of melanin from testae of wild apricots and evaluation of its stability. Food Sci, 2016, 37(10): 69-75.

[58]

Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol, 2016, 214: 144-149.

[59]

Li Y, Li W, Zhang G, Lu X, Hwang H, Aker WG, Guan H, Wang P. Purification and characterization of polysaccharides degradases produced by Alteromonas sp. A321. Int J Biol Macromol, 2016, 86: 96-104.

[60]

Li J, Chi Z, Yu L, Jiang F, Liu C. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from Enteromorpha prolifera. Int J Biol Macromol, 2017, 105: 1544-1553.

[61]

Li J-Y, Yang F, Jin L, Wang Q, Yin J, He P, Chen Y. Safety and quality of the green tide algal species Ulva prolifera for option of human consumption: a nutrition and contamination study. Chemosphere, 2018, 210: 1021-1028.

[62]

Li Q, Luo J, Wang C, Tai W, Wang H, Zhang X, Liu K, Jia Y, Lyv X, Wang L. Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. J Appl Phycol, 2018, 30: 2017-2027.

[63]

Li W, Jiang N, Li B, Wan M, Chang X, Liu H, Zhang L, Yin S, Qi H, Liu S. Antioxidant activity of purified ulvan in hyperlipidemic mice. Int J Biol Macromol, 2018, 113: 971-975.

[64]

Li B, Xu H, Wang X, Wan Y, Jiang N, Qi H, Liu X. Antioxidant and antihyperlipidemic activities of high sulfate content purified polysaccharide from Ulva pertusa. Int J Biol Macromol, 2020, 146: 756-762.

[65]

Li Y, Ye H, Wang T, Wang P, Liu R, Li Y, Tian Y, Zhang J (2020b) Characterization of low Molecular Weight Sulfate Ulva Polysaccharide and its protective effect against IBD in mice. Mar Drugs 18(10)

[66]

Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong AC, Hsieh YS, Wang D. Brown algae carbohydrates: structures, pharmaceutical properties, and research challenges. Mar Drugs, 2021, 19(11): 620.

[67]

Li C, Tang T, Jiang J, Yao Z, Zhu B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology, 2023, 33(10): 837-845.

[68]

Lin GP, Wu DS, Xiao XW, Huang QY, Chen HB, Liu D, Fu HQ, Chen XH, Zhao C. Structural characterization and antioxidant effect of green alga Enteromorpha prolifera polysaccharide in Caenorhabditis elegans via modulation of microRNAs. Int J Biol Macromol, 2020, 150: 1084-1092.

[69]

Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull, 2010, 60(9): 1423-1432.

[70]

Liu XY, Liu D, Lin GP, Wu YJ, Gao LY, Ai C, Huang YF, Wang MF, El-Seedi HR, Chen XH, Zhao C. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. Int J Biol Macromol, 2019, 139: 342-351.

[71]

Liu G, Duan Y, Yang S, Yu M, Lv Z. Simultaneous quantification of marine neutral neoagaro-oligosaccharides and agar-oligosaccharides by the UHPLC-MS/MS method: application to the intestinal transport study by using the Caco-2 cell monolayer. Anal Methods, 2022, 14(22): 2227-2234.

[72]

Lopes N, Ray S, Espada SF, Bomfim WA, Ray B, Faccin-Galhardi LC, Linhares REC, Nozawa C. Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol, 2017, 102: 605-612.

[73]

Lu H, Gao Y, Shan H, Lin Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr Polym, 2014, 107: 98-102.

[74]

Lv H, Xiao B, Gao Y. Study on the extraction, purification and structural characterization of polysaccharide from Enteromorpha. Food Res Dev, 2013, 34(8): 33-36.

[75]

Mao W, Zang X, Li Y, Zhang H. Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol, 2006, 18(1): 9-14.

[76]

Mao W, Li H, Li Y, Zhang H, Qi X, Sun H, Chen Y, Guo S. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). Int J Biol Macromol, 2009, 44(1): 70-74.

[77]

Matsubara K. Recent advances in marine algal anticoagulants. Curr Med Chemistry-Cardiovascular Hematol Agents, 2004, 2(1): 13-19.

[78]

Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res, 2016, 424: 30-41.

[79]

Muhamad II, Zulkifli N, Lazim NAM. Bioactive algal-derived polysaccharides: multi-functionalization, therapeutic potential and biomedical applications. Curr Pharm Des, 2019, 25(11): 1147-1162.

[80]

Olsson J, Toth GB, Oerbekke A, Cvijetinovic S, Wahlström N, Harrysson H, Steinhagen S, Kinnby A, White J, Edlund U. Cultivation conditions affect the monosaccharide composition in Ulva fenestrata. J Appl Phycol, 2020, 32(5): 3255-3263.

[81]

Pan X, Wu H, Pan M, Zhang Y, Wei X, Cheng J. Separation, purification and component analysis of Enteromorpha polysaccharides from Jiangsu. Chin J New Drugs, 2019, 28(18): 2274-2278.

[82]

Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M. First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. Algal Res, 2016, 19: 348-354.

[83]

Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res, 2003, 48(6): 543-549.

[84]

Pisoschi AMA, Pop. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem, 2015, 97: 55-74.

[85]

Ponce M, Zuasti E, Anguís V, Fernández-Díaz C. Effects of the sulfated polysaccharide ulvan from Ulva ohnoi on the modulation of the immune response in Senegalese sole (Solea senegalensis). Fish Shellfish Immunol, 2020, 100: 27-40.

[86]

Pozharitskaya ON, Obluchinskaya ED, Shikov AN. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Mar Drugs, 2020, 18(5): 275.

[87]

Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol, 2006, 17(6): 527-534.

[88]

Qi X, Mao W, Gao Y, Chen Y, Chen Y, Zhao C, Li N, Wang C, Yan M, Lin C, Shan J. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydr Polym, 2012, 90(4): 1804-1810.

[89]

Qi X, Mao W, Chen Y, Chen Y, Zhao C, Li N, Wang C. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta). J Ocean Univ China, 2013, 12: 175-182.

[90]

Qin H-M, Xu P, Guo Q, Cheng X, Gao D, Sun D, Zhu Z, Lu F. Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Adv, 2018, 8(5): 2610-2615.

[91]

Ray B. Polysaccharides from Enteromorpha compressa: isolation, purification and structural features. Carbohydr Polym, 2006, 66(3): 408-416.

[92]

Ray BM, Lahaye. Cell-wall polysaccharides from the marine green alga Ulva rigida(Ulvales, Chlorophyta). Extraction and chemical composition. Carbohydr Res, 1995, 274: 251-261.

[93]

Reisky L, Stanetty C, Mihovilovic MD, Schweder T, Hehemann JH, Bornscheuer UT. Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa Agariphila KMM 3901(T). Appl Microbiol Biotechnol, 2018, 102(16): 6987-6996.

[94]

Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent progress on polysaccharide-based hydrogels for controlled delivery of therapeutic biomolecules. ACS Biomater Sci Eng, 2021, 7(9): 4102-4127.

[95]

Rodrigues VJ, Jouanneau D, Fernandez-Fuentes N, Onime LA, Huws SA, Odaneth AA, Adams JM. Biochemical characterisation of a PL24 ulvan lyase from seaweed-associated Vibrio sp. FNV38. J Appl Phycol, 2024, 36(2): 697-711.

[96]

Samarasinghe M, van der Heide M, Weisbjerg M, Sehested J, Sloth JJ, Bruhn A, Vestergaard M, Nørgaard J, Hernández-Castellano LE. A descriptive chemical analysis of seaweeds, Ulva sp., Saccharina latissima and Ascophyllum nodosum harvested from Danish and Icelandic waters. Anim Feed Sci Technol, 2021, 278: 115005.

[97]

Shanmugam M, Ramavat B, Mody K, Oza R, Tewari A (2001) Distribution of heparinoid-active sulphated polysaccharides in some Indian marine green algae

[98]

Shao P, Chen M, Pei Y, Sun P. In intro antioxidant activities of different sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. Int J Biol Macromol, 2013, 59: 295-300.

[99]

Shefer S, Robin A, Chemodanov A, Lebendiker M, Bostwick R, Rasmussen L, Lishner M, Gozin M, Golberg A. Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in in vitro Vero-E6 cells assay. PeerJ, 2021, 9: e12398.

[100]

Shi M-J, Wei X, Xu J, Chen B-J, Zhao D-Y, Cui S, Zhou T. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity. Food Chem, 2017, 215: 76-83.

[101]

Smetacek VA, Zingone. Green and golden seaweed tides on the rise. Nature, 2013, 504(7478): 84-88.

[102]

Song D-x.,J.-g., Jiang (2017) Hypolipidemic components from medicine food homology species used in China: pharmacological and health effects. Arch Med Res 48(7): 569–581

[103]

Song X, Guo X, Zhou W, Wen Y, Zhu C, Yang H. Composition and Biological Activity of Water-Soluble Polysaccharide from Enteromorpha prolifera. LiShiZhen Med Materia Med Res, 2010, 21(10): 2448-2450.

[104]

Srivastava R, Nedungadi S, Alharthi M, Ahamad M, Luqman M. Nutraceutical products based on polysaccharides: sources, properties and applications, 2021, Elsevier: Food, Medical, and Environmental Applications of Polysaccharides, 531-554.

[105]

Stender EG, Andersen CD, Fredslund F, Holck J, Solberg A, Teze D, Peters GH, Christensen BE, Aachmann FL, Welner DH. Structural and functional aspects of mannuronic acid–specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem, 2019, 294(47): 17915-17930.

[106]

Sun Y, Chen X, Song L, Liu S, Yu H, Wang X, Qin Y, Li P. Antiviral activity against avian leucosis virus subgroup J of degraded polysaccharides from Ulva pertusa. BioMed Res Int, 2018, 2018(3): 1-11.

[107]

Tabarsa M, You S, Dabaghian EH, Surayot U. Water-soluble polysaccharides from Ulva intestinalis: molecular properties, structural elucidation and immunomodulatory activities. J Food Drug Anal, 2018, 26(2): 599-608.

[108]

Tang Z, Gao H, Wang S, Wen S, Qin S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. Int J Biol Macromol, 2013, 58: 186-189.

[109]

Tang T, Zhu B, Yao Z (2022) Biochemical characterization and elucidation the action mode of a new PL25 family ulvan lyase from marine bacterium Alteromonas Sp. TK-45 (2). Algal Research 67.

[110]

Tang T, Li C, Zhu B, Yao Z. Efficient preparation and production of ulvan oligosaccharides by using a new PL25 family ulvan lyase from Alteromonas Sp. J Appl Phycol, 2023, 35(5): 76-71.

[111]

Teng Z, Qian L, Zhou Y. Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera. Int J Biol Macromol, 2013, 62: 254-256.

[112]

Thu QTM, Bang TH, Nu NT, Luong ĐV, Ly BM, Van TTT, Thuy TTT. Structural determination of ulvan from green seaweed Ulva reticulata collected at central coast of Vietnam. Chem Lett, 2015, 44(6): 788-790.

[113]

Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem, 2016, 210: 311-316.

[114]

Tziveleka L-A, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: a review. Carbohydr Polym, 2019, 218: 355-370.

[115]

Ulaganathan T, Boniecki MT, Foran E, Buravenkov V, Mizrachi N, Banin E, Helbert W, Cygler M. New Ulvan-degrading polysaccharide lyase family: structure and catalytic mechanism suggests convergent evolution of active site architecture. ACS Chem Biol, 2017, 12(5): 1269-1280.

[116]

Ulaganathan T, Banin E, Helbert W, Cygler M. Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. J Biol Chem, 2018, 293(29): 11564-11573.

[117]

Ulaganathan T, Helbert W, Kopel M, Banin E, Cygler M. Structure–function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. J Biol Chem, 2018, 293(11): 4026-4036.

[118]

Van Alstyne KL, Nelson TA, Ridgway RL. Environmental Chemistry and Chemical Ecology of Green Tide Seaweed blooms. Integr Comp Biol, 2015, 55(3): 518-532.

[119]

Vinchhi P, Rawal SU, Patel MM (2021) Biodegradable hydrogels. Drug delivery devices and therapeutic systems, Elsevier: 395–419

[120]

Wahlström N, Nylander F, Malmhäll-Bah E, Sjövold K, Edlund U, Westman G, Albers E. Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydr Polym, 2020, 233: 115852.

[121]

Wan Y, Liu L, Zhang B, Wang S, Wang X, Chen K, Li Y, Zhao T, Qi H. Structural characterization and anti-nonalcoholic fatty liver effect of high-sulfated Ulva pertusa Polysaccharide. Pharmaceuticals, 2022, 16(1): 62.

[122]

Wang X, Zhang Z, Yao Z, Zhao M, Qi H. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int J Biol Macromol, 2013, 58: 225-230.

[123]

Wang Z, Xiao J, Fan S, Li Y, Liu X, Liu D. Who made the world’s largest green tide in China?-an integrated study on the initiation and early development of the green tide in Yellow Sea. Limnol Oceanogr, 2015, 60(4): 1105-1117.

[124]

Wang D, Li Y, Han L, Yin C, Fu Y, Zhang Q, Zhao X, Li G, Han F, Yu W. Biochemical properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from marine bacterium Thalassomonas sp. LD5. Mar Drugs, 2022, 20(3): 168.

[125]

Wassie T, Niu K, Xie C, Wang H, Xin W. Extraction techniques, biological activities and health benefits of marine algae Enteromorpha prolifera polysaccharide. Front Nutr, 2021, 8: 747928.

[126]

Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Wang J, Mulu B, Taye M, Wu X. Enteromorpha polysaccharide and yeast glycoprotein mixture improves growth, antioxidant activity, serum lipid profile and regulates lipid metabolism in broiler chickens. Poult Sci, 2022, 101(10): 102064.

[127]

Wijesekara I, Pangestuti R, Kim S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym, 2011, 84(1): 14-21.

[128]

Witvrouw ME, De Clercq. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacology: Vascular Syst, 1997, 29(4): 497-511.

[129]

Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr Polym, 2016, 154: 96-111.

[130]

Xu D, Huang X, Ou C, Xue C, Yang W, Haihong W. In Vitro Study on polysaccharides in Enteromorpha with non-specific immunity. Food Sci, 2005, 26(10): 232-235.

[131]

Xu J, Xu L-L, Zhou Q-W, Hao S-X, Zhou T, Xie H-J. Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera. Int J Biol Macromol, 2015, 81: 1026-1030.

[132]

Xu Y, Mao W, Gao W, Chi Z, Chi Z, Liu G. Efficient production of a recombinant ι-carrageenase in Brevibacillus choshinensis using a new integrative vector for the preparation of ι-carrageenan oligosaccharides. Process Biochem, 2019, 76: 68-76.

[133]

Xu Y, Li J, An L, Qiu Y, Mao A, He Z, Guo J, Yan H, Li H, Hu Z (2024) Biochemical characterization of a Novel Thermostable Ulvan Lyase from Tamlana fucoidanivorans CW2-9. J Agric Food Chem.

[134]

Yang B, Yu G, Zhao X, Ren W, Jiao G, Fang L, Wang Y, Du G, Tiller C, Girouard G. Structural characterisation and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria Lumbricalis. Food Chem, 2011, 124(1): 50-57.

[135]

Yang Y, Zhang P, Liu G, Yang S, Wang Y, Jiang T, Lv Z, Yu M. Simultaneous quantification of κ-Carrageenan oligosaccharides of DP 3, 5 and 7 by LC-MS/MS: application to an in vitro absorption study. J Ocean Univ China, 2020, 19(5): 1177-1182.

[136]

Yu Y, Li Y, Du C, Mou H, Wang P. Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydr Polym, 2017, 165: 221-228.

[137]

Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym, 2018, 183: 91-101.

[138]

Yuan Y, Xu X, Jing C, Zou P, Zhang C, Li Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: functional properties and bioactivities. Carbohydr Polym, 2018, 181: 902-910.

[139]

Zhang Z, Wang F, Wang X, Liu X, Hou Y, Zhang Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr Polym, 2010, 82(1): 118-121.

[140]

Zhang Z, Wang X, Mo X, Qi H. Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydr Polym, 2013, 92(2): 2084-2087.

[141]

Zhang W, Oda T, Yu Q, Jin JO. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar Drugs, 2015, 13(3): 1084-1104.

[142]

Zhang Z, Han X, Xu Y, Li J, Li Y, Hu Z. Biodegradation of Enteromorpha polysaccharides by intestinal micro-community from Siganus oramin. J Ocean Univ China, 2016, 15(6): 1034-1038.

[143]

Zhang R, Chen Y, Zhou Y, Tong D, Hu C. Selective conversion of hemicellulose in macroalgae Enteromorpha prolifera to rhamnose. ACS Omega, 2019, 4(4): 7023-7028.

[144]

Zhao X, Sun W, Zhang S, Meng G, Qi C, Fan W, Wang Y, Liu J. The immune adjuvant response of polysaccharides from Atractylodis macrocephalae Koidz in chickens vaccinated against Newcastle disease (ND). Carbohydr Polym, 2016, 141: 190-196.

[145]

Zhao C, Yang C, Wai STC, Zhang Y, M PP, Paoli P, Wu Y, San Cheang W, Liu B, Carpene C, Xiao J, Cao H. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr, 2019, 59(6): 830-847.

[146]

Zhong R, Wan X, Wang D, Zhao C, Liu D, Gao L, Wang M, Wu C, Nabavid SM, Daglia M. Polysaccharides from marine Enteromorpha: structure and function. Trends Food Sci Technol, 2020, 99: 11-20.

[147]

Zhou Z, Pan S, Wu S. Modulation of the growth performance, body composition and nonspecific immunity of crucian carp Carassius auratus upon Enteromorpha prolifera polysaccharide. Int J Biol Macromol, 2020, 147: 29-33.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/