Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis

Xiaoyi Xu , Hao Yang , Huarong Dong , Xiao Li , Qian Liu , Yan Feng

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 94

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 94 DOI: 10.1186/s40643-024-00797-x
Research

Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis

Author information +
History +
PDF

Abstract

Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5′-phosphate gDNA, 14–30 nucleotides in length, in the presence of both Mn2+ and Mg2+ ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4–12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5′-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10–16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.

Graphical Abstract

Cite this article

Download citation ▾
Xiaoyi Xu, Hao Yang, Huarong Dong, Xiao Li, Qian Liu, Yan Feng. Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis. Bioresources and Bioprocessing, 2024, 11(1): 94 DOI:10.1186/s40643-024-00797-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BenchouaiaR, DollM, BerthaultP, ChighineK, LeonceE, BrotinT, RyckeN. A water-soluble cryptophane decorated with aromatic amine groups shows high affinity for cesium and thallium(I). J Org Chem, 2024, 89(7): 4560-4568

[2]

Bobadilla UgarteP, BarendseP, SwartsDC. Argonaute proteins confer immunity in all domains of life. Curr Opin Microbiol, 2023, 74

[3]

CaoY, SunW, WangJ, ShengG, XiangG, ZhangT, ShiW, LiC, WangY, ZhaoF, WangH. Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37 degrees C. Cell Discov, 2019, 5: 38

[4]

ChenX, LiL, ChanZ, ZengR, LinM, LinH. One-step process for environment-friendly preparation of agar oligosaccharides from Gracilaria lemaneiformis by the action of Flammeovirga sp. OC4. Front Microbiol, 2019, 10: 724

[5]

DongH, HuangF, GuoX, XuX, LiuQ, LiX, FengY. Characterization of argonaute nucleases from mesophilic bacteria Paenibacillus borealis and Brevibacillus laterosporus. Bioresour Bioprocess, 2021, 8(1): 1-12

[6]

DongZ, ChenX, ZhuoR, LiY, ZhouZ, SunY, LiuY, LiuM. Efficient manipulation of gene expression using Natronobacterium gregoryi argonaute in zebrafish. BMC Biol, 2023, 21(1): 95

[7]

EsyuninaD, OkhtienkoA, OlinaA, PanteleevV, ProstovaM, AravinAA, KulbachinskiyA. Specific targeting of plasmids with argonaute enables genome editing. Nucleic Acids Res, 2023, 51(8): 4086-4099

[8]

FangM, XuZ, HuangD, NaeemM, ZhuX, XuZ. Characterization and application of a thermophilic argonaute from archaeon Thermococcus thioreducens. Biotechnol Bioeng, 2022, 119(9): 2388-2398

[9]

FuX, YanQ, YangS, YangX, GuoY, JiangZ. An acidic, thermostable exochitinase with beta-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. Biotechnol Biofuels, 2014, 7(1): 174

[10]

FuL, XieC, JinZ, TuZ, HanL, JinM, XiangY, ZhangA. The prokaryotic argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Res, 2019, 47(7): 3568-3579

[11]

Garcia-QuintansN, BowdenL, BerenguerJ, MenciaM. DNA interference by a mesophilic argonaute protein, CbcAgo. F1000Research, 2019, 8: 321

[12]

GraverBA, ChakravartyN, SolomonKV. Prokaryotic argonautes for in vivo biotechnology and molecular diagnostics. Trends Biotechnol, 2024, 42(1): 61-73

[13]

HeggeJW, SwartsDC, van der OostJ. Prokaryotic argonaute proteins: novel genome-editing tools?. Nat Rev Microbiol, 2018, 16(1): 5-11

[14]

HeggeJW, SwartsDC, ChandradossSD, CuiTJ, KneppersJ, JinekM, JooC, van der OostJ. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum argonaute. Nucleic Acids Res, 2019, 47(11): 5809-5821

[15]

HeitzF, Van MauN. Protein structural changes induced by their uptake at interfaces. Biochim Biophys Acta, 2002, 1597(1): 1-11

[16]

HuangF, XuX, DongH, LiN, ZhongB, LuH, LiuQ, FengY. Catalytic properties and biological function of a PIWI-RE nuclease from Pseudomonas stutzeri. Bioresour Bioprocess, 2022, 9(1): 57

[17]

HuangS, WangK, MayoSL. Genome manipulation by guide-directed argonaute cleavage. Nucleic Acids Res, 2023, 51(8): 4078-4085

[18]

JiangX, LiuY, LiuQ, MaL. Characterization of a programmable argonaute nuclease from the mesophilic bacterium Rummeliibacillus suwonensis. Biomolecules, 2022, 12(3): 355

[19]

KasperowiczA, Stan-GlasekK, GuczynskaW, PristasP, JavorskyP, VandzurovaA, MichalowskiT. beta-Fructofuranosidase and sucrose phosphorylase of rumen bacterium Pseudobutyrivibrio ruminis strain 3. World J Microbiol Biotechnol, 2012, 28(3): 1271-1279

[20]

KayaE, DoxzenKW, KnollKR, WilsonRC, StruttSC, KranzuschPJ, DoudnaJA. A bacterial argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA, 2016, 113(15): 4057-4062

[21]

KoopalB, PotocnikA, MutteSK, Aparicio-MaldonadoC, LindhoudS, VervoortJJM, BrounsSJJ, SwartsDC. Short prokaryotic argonaute systems trigger cell death upon detection of invading DNA. Cell, 2022, 185(9): 1471-1486.e1419

[22]

KropochevaE, KuzmenkoA, AravinAA, EsyuninaD, KulbachinskiyA. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis. Nucleic Acids Res, 2021, 49(7): 4054-4065

[23]

KuzmenkoA, YudinD, RyazanskyS, KulbachinskiyA, AravinAA. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res, 2019, 47(11): 5822-5836

[24]

LeeKZ, MechikoffMA, KiklaA, LiuA, PandolfiP, FitzgeraldK, GimbleFS, SolomonKV. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res, 2021, 49(17): 9926-9937

[25]

LiW, LiuY, HeR, WangL, WangY, ZengW, ZhangZ, WangF, MaL. A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis. Nucleic Acids Res, 2022, 50(9): 5226-5238

[26]

LiX, DongH, GuoX, HuangF, XuX, LiN, YangY, YaoT, FengY, LiuQ. Mesophilic argonaute-based isothermal detection of SARS-CoV-2. Front Microbiol, 2022, 13

[27]

LiangJJ, ZhangML, DingM, MaiZM, WuSX, DuY, FengJX. Alcohol dehydrogenases from Kluyveromyces marxianus: heterologous expression in Escherichia coli and biochemical characterization. BMC Biotechnol, 2014, 14: 45

[28]

LisitskayaL, AravinAA, KulbachinskiyA. DNA interference and beyond: structure and functions of prokaryotic argonaute proteins. Nat Commun, 2018, 9(1): 5165

[29]

LiuQ, GuoX, XunG, LiZ, ChongY, YangL, WangH, ZhangF, LuoS, CuiL, ZhaoP, YeX, XuH, LuH, LiX, DengZ, LiK, FengY. Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Res, 2021, 49(13)

[30]

LiuY, LiW, JiangX, WangY, ZhangZ, LiuQ, HeR, ChenQ, YangJ, WangL, WangF, MaL. A programmable omnipotent argonaute nuclease from mesophilic bacteria Kurthia massiliensis. Nucleic Acids Res, 2021, 49(3): 1597-1608

[31]

LiuQ, ChenW, ZhangY, HuF, JiangX, WangF, LiuY, MaL. A programmable pAgo nuclease with RNA target-cleavage specificity from the mesophilic bacterium Verrucomicrobia. Acta Biochim Biophys Sin, 2023, 55(8): 1204-1212

[32]

MaalejH, Ben AyedH, Ghorbel-BellaajO, NasriM, HmidetN. Production and biochemical characterization of a high maltotetraose (G4) producing amylase from Pseudomonas stutzeri AS22. Biomed Res Int, 2014, 2014

[33]

MiyoshiT, ItoK, MurakamiR, UchiumiT. Structural basis for the recognition of guide RNA and target DNA heteroduplex by argonaute. Nat Commun, 2016, 7: 11846

[34]

Ober-ReynoldsB, BeckerWR, JouravlevaK, JollySM, ZamorePD, GreenleafWJ. High-throughput biochemical profiling reveals functional adaptation of a bacterial argonaute. Mol Cell, 2022, 82(7): 1329-1342.e1328

[35]

OlovnikovI, ChanK, SachidanandamR, NewmanDK, AravinAA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell, 2013, 51(5): 594-605

[36]

PidcockSE, SkvortsovT, SantosFG, CourtneySJ, Sui-TingK, CreeveyCJ, HuwsSA. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms. Microb Genom, 2021, 7(10)

[37]

QiJ, DongZ, ShiY, WangX, QinY, WangY, LiuD. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res, 2016, 26(12): 1349-1352

[38]

SagendorfJM, BermanHM, RohsR. DNAproDB: an interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res, 2017, 45(W1): W89-W97

[39]

SagendorfJM, MarkarianN, BermanHM, RohsR. DNAproDB: an expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Res, 2020, 48(D1): D277-D287

[40]

ShenZ, YangXY, XiaS, HuangW, TaylorDJ, NakanishiK, FuTM. Oligomerization-mediated activation of a short prokaryotic argonaute. Nature, 2023, 621(7977): 154-161

[41]

ShiraiT, SuzukiA, YamaneT, AshidaT, KobayashiT, HitomiJ, ItoS. High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng, 1997, 10(6): 627-634

[42]

ShiraiT, IshidaH, NodaJ, YamaneT, OzakiK, HakamadaY, ItoS. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol, 2001, 310(5): 1079-1087

[43]

SongJJ, SmithSK, HannonGJ, Joshua-TorL. Crystal structure of argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434-1437

[44]

SunS, XuD, ZhuL, HuB, HuangZ. A programmable, DNA-exclusively-guided argonaute DNase and its higher cleavage specificity achieved by 5′-hydroxylated guide. Biomolecules, 2022, 12(10): 1340

[45]

SunY, GuoX, LuH, ChenL, HuangF, LiuQ, FengY. An argonaute from Thermus parvatiensis exhibits endonuclease activity mediated by 5′ chemically modified DNA guides. Acta Biochim Biophys Sin, 2022, 54(5): 686-695

[46]

SwartsDC, MakarovaK, WangY, NakanishiK, KettingRF, KooninEV, PatelDJ, van der OostJ. The evolutionary journey of argonaute proteins. Nat Struct Mol Biol, 2014, 21(9): 743-753

[47]

SwartsDC, HeggeJW, HinojoI, ShiimoriM, EllisMA, DumrongkulraksaJ, TernsRM, TernsMP, van der OostJ. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res, 2015, 43(10): 5120-5129

[48]

TeradaY, FujiiK, TakahaT, OkadaS. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl Environ Microbiol, 1999, 65(3): 910-915

[49]

VaiskunaiteR, VainauskasJ, MorrisJJL, PotapovV, BitinaiteJ. Programmable cleavage of linear double-stranded DNA by combined action of argonaute CbAgo from Clostridium butyricum and nuclease deficient RecBC helicase from E. coli. Nucleic Acids Res, 2022, 50(8): 4616-4629

[50]

VivekK, SandhiaGS, SubramaniyanS. Extremophilic lipases for industrial applications: a general review. Biotechnol Adv, 2022, 60

[51]

WanS, BhatiAP, ZasadaSJ, CoveneyPV. Rapid, accurate, precise and reproducible ligand-protein binding free energy prediction. Interface Focus, 2020, 10(6): 20200007

[52]

WangY, JuranekS, LiH, ShengG, WardleGS, TuschlT, PatelDJ. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 2009, 461(7265): 754-761

[53]

WangZ, FengN, ZhouY, ChengX, ZhouC, MaA, WangQ, LiY, ChenY. Mesophilic argonaute-mediated polydisperse droplet biosensor for amplification-free, one-pot, and multiplexed nucleic acid detection using deep learning. Anal Chem, 2024, 96(5): 2068-2077

[54]

WillkommS, ZanderA, GustA, GrohmannD. A prokaryotic twist on argonaute function. Life, 2015, 5(1): 538-553

[55]

YanY, ZhangD, ZhouP, LiB, HuangSY. HDOCK: a web server for protein–protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res, 2017, 45(W1): W365-W373

[56]

YangH, LiuL, ShinHD, ChenRR, LiJ, DuG, ChenJ. Structure-based engineering of histidine residues in the catalytic domain of alpha-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J Biotechnol, 2013, 164(1): 59-66

[57]

YeX, ZhouH, GuoX, LiuD, LiZ, SunJ, HuangJ, LiuT, ZhaoP, XuH, LiK, WangH, WangJ, WangL, ZhaoW, LiuQ, XuS, FengY. Argonaute-integrated isothermal amplification for rapid, portable, multiplex detection of SARS-CoV-2 and influenza viruses. Biosens Bioelectron, 2022, 207

[58]

ZanderA, HolzmeisterP, KloseD, TinnefeldP, GrohmannD. Single-molecule FRET supports the two-state model of argonaute action. RNA Biol, 2014, 11(1): 45-56

[59]

ZhaoJ, HanM, MaA, JiangF, ChenR, DongY, WangX, RuanS, ChenY. A machine vision-assisted argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. J Hazard Mater, 2024, 466

Funding

Ministry of Science and Technology(2020YFA0907700)

National Natural Science Foundation of China(31770078)

Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(21TQ1400204)

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/