Biodegradation: the best solution to the world problem of discarded polymers

Jun Wu , Jia Wang , Yicheng Zeng , Xinxiao Sun , Qipeng Yuan , Ling Liu , Xiaolin Shen

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 79

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 79 DOI: 10.1186/s40643-024-00793-1
Review

Biodegradation: the best solution to the world problem of discarded polymers

Author information +
History +
PDF

Abstract

The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.

Keywords

Biodegradation / Polymers / Single-strain degradation / Multi-strain degradation / Enzyme engineering

Cite this article

Download citation ▾
Jun Wu, Jia Wang, Yicheng Zeng, Xinxiao Sun, Qipeng Yuan, Ling Liu, Xiaolin Shen. Biodegradation: the best solution to the world problem of discarded polymers. Bioresources and Bioprocessing, 2024, 11(1): 79 DOI:10.1186/s40643-024-00793-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aboelkheir MG, Bedor PB, Leite SG, Pal K, Toledo Filho RD, Gomes de Souza F Jr. Biodegradation of vulcanized sbr: a comparison between Bacillus subtilis, Pseudomonas aeruginosa and Streptomyces Sp. Sci Rep, 2019, 9(1): 19304.

[2]

Ahari H, Soufiani SP. Smart and active food packaging: insights in novel food packaging. Front Microbiol, 2021, 12: 657233.

[3]

Altenhoff AL, Thierbach S, Steinbüchel A (2021) In vitro studies on the degradation of common rubber waste material with the latex clearing protein (lcp1(vh2)) of gordonia polyisoprenivorans vh2. Biodegradation 32 (2):113–125 https://doi.org/10.1007/s10532-020-09920-z

[4]

Amanna R, Rakshit SK. Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity. Biodegradation https://doi, 2023

[5]

Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Sci Total Environ, 2021, 759: 143536.

[6]

Andler R. Bacterial and enzymatic degradation of poly(cis-1,4-isoprene) rubber: novel biotechnological applications. Biotechnol Adv, 2020, 44: 107606.

[7]

Arunrattanamook N, Mhuantong W, Paemanee A, Reamtong O, Hararak B, Champreda V. Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics. Appl Microbiol Biotechnol, 2023, 107(24): 7439-7450.

[8]

Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A, 2018, 115(19): E4350-e4357.

[9]

Auta HS, Emenike CU, Fauziah SH. Screening of bacillus strains isolated from mangrove ecosystems in peninsular Malaysia for microplastic degradation. Environ Pollut, 2017, 231(Pt 2): 1552-1559.

[10]

Basik AA, Trakunjae C, Yeo TC, Sudesh K. Streptomyces sp. Ac04842: genomic insights and functional expression of its latex clearing protein genes (lcp1 and lcp2) when cultivated with natural and vulcanized rubber as the sole carbon source. Front Microbiol, 2022, 13: 854427.

[11]

Béraud E, Bednarz V, Otto I, Golbuu Y, Ferrier-Pagès C. Plastics are a new threat to Palau’s coral reefs. PLoS ONE, 2022, 17(7): e0270237.

[12]

Bher A, Cho Y, Auras R. Boosting degradation of biodegradable polymers. Macromol Rapid Commun, 2023, 44(5): e2200769.

[13]

Brasika IBM, Hendrawan IG, Karang I, Pradnyaswari I, Pratiwi N, Wiguna IGM. Evaluating the collection and composition of plastic waste in the digital waste bank and the reduction of potential leakage into the ocean. Waste Manag Res, 2023, 41(3): 676-686.

[14]

Calabrese MA, Chan WY, Av-Ron SHM, Olsen BD. Development of a rubber recycling process based on a single-component interfacial adhesive. ACS Appl Polym, 2021, 3(10): 4849-4860.

[15]

Camacho-Muñoz R, Villada-Castillo HS, Solanilla-Duque JF. Anaerobic biodegradation under slurry thermophilic conditions of poly(lactic acid)/starch blend compatibilized by maleic anhydride. Int J Biol Macromol, 2020, 163: 1859-1865.

[16]

Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnol Bioeng, 2017, 114(11): 2571-2580.

[17]

Chen CC, Dai L, Ma L, Guo RT. Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem, 2020, 4(3): 114-126.

[18]

Chen C-C, Han X, Li X, Jiang P, Niu D, Ma L, Liu W, Li S, Qu Y, Hu H, Min J, Yang Y, Zhang L, Zeng W, Huang J-W, Dai L, Guo R-T. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat Catal, 2021, 4(5): 425-430.

[19]

Chow J, Perez-Garcia P, Dierkes R, Streit WR. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb Biotechnol, 2023, 16(2): 195-217.

[20]

Cribari MA, Unger MJ, Unarta IC, Ogorek AN, Huang X, Martell JD. Ultrahigh-throughput directed evolution of polymer-degrading enzymes using yeast display. J Am Chem Soc, 2023, 145(50): 27380-27389.

[21]

Cui C, Jiang M, Zhang C, Zhang N, Jin FJ, Li T, Lee HG, Jin L. Assembly strategies for rubber-degrading microbial consortia based on omics tools. Front Bioeng Biotechnol, 2023, 11: 1326395.

[22]

Cui Y, Chen Y, Sun J, Zhu T, Pang H, Li C, Geng WC, Wu B. Computational redesign of a hydrolase for nearly complete pet depolymerization at industrially relevant high-solids loading. Nat Commun, 2024, 15(1): 1417.

[23]

Dąbrowska GB, Garstecka Z, Olewnik-Kruszkowska E, Szczepańska G, Ostrowski M, Mierek-Adamska A. Comparative study of structural changes of polylactide and poly(ethylene terephthalate) in the presence of Trichoderma Viride. Int J Mol Sci, 2021, 22: 7.

[24]

DelRe C, Jiang Y, Kang P, Kwon J, Hall A, Jayapurna I, Ruan Z, Ma L, Zolkin K, Li T, Scown CD, Ritchie RO, Russell TP, Xu T. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature, 2021, 592(7855): 558-563.

[25]

Devi D, Gupta KK, Chandra H, Sharma KK, Sagar K, Mori E, de Farias PAM, Coutinho HDM, Mishra AP. Biodegradation of low-density polyethylene (ldpe) through application of indigenous strain Alcaligenes faecalis isj128. Environ Geochem Health, 2023, 45(12): 9391-9409.

[26]

Dhanraj ND, Hatha AAM, Jisha MS. Biodegradation of petroleum based and bio-based plastics: approaches to increase the rate of biodegradation. Arch Microbiol, 2022, 204(5): 258.

[27]

Duval C. Plastic waste and the environment. Environ Impact Polym, 2014

[28]

Europe P (2023) Plastics – the fast facts 2023. Plastics Europe, https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/

[29]

Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP, Ramírez-Sarmiento CA. Active site flexibility as a hallmark for efficient pet degradation by i.sakaiensis petase. Biophys J, 2018, 114(6): 1302-1312.

[30]

Finzi-Quintão CM, Novack KM, Bernardes-Silva AC, Silva TD, Moreira LES, Braga LEM. Biodegradation of moringa oleifera’s polymer blends. Environ Technol, 2019, 40(4): 508-517.

[31]

García-Meseguer R, Ortí E, Tuñón I, Ruiz-Pernía JJ, Aragó J. Insights into the enhancement of the poly(ethylene terephthalate) degradation by fast-petase from computational modeling. J Am Chem Soc, 2023, 145(35): 19243-19255.

[32]

Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. N Biotechnol, 2019, 52: 35-41.

[33]

Gómez-Méndez LD, Jiménez-Borrego LC, Pérez-Flórez A, Poutou-Piñales RA, Pedroza-Rodríguez AM, Salcedo-Reyes JC, Vargas A, Bogoya JM (2021) Ldpe transformation by exposure to sequential low-pressure plasma and tio(2)/uv photocatalysis. Molecules 26(9). https://doi.org/10.3390/molecules26092513

[34]

Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu X, Cui H, Hai T, Joachimiak A, Golyshin PN, Savchenko A, Edwards EA, Yakunin AF. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules, 2016, 17(6): 2027-2039.

[35]

Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, arabian sea, India. Mar Pollut Bull, 2013, 77(1–2): 100-106.

[36]

Howard SA, Carr CM, Sbahtu HI, Onwukwe U, López MJ, Dobson ADW, McCarthy RR. Enrichment of native plastic-associated biofilm communities to enhance polyester degrading activity. Environ Microbiol, 2023, 25(12): 2698-2718.

[37]

Ibrahim S, Gupta RK, War AR, Hussain B, Kumar A, Sofi T, Noureldeen A, Darwish H. Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug. Saudi J Biol Sci, 2021, 28(6): 3214-3224.

[38]

Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M. Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene). Enzyme Microb Technol, 2011, 49(6–7): 526-531.

[39]

Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, Geraga M, Zeri C, Papathanassiou E, Galgani F, Papatheodorou G. The degradation potential of pet bottles in the marine environment: an atr-ftir based approach. Sci Rep, 2016, 6: 23501.

[40]

Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. Bioresour Bioprocess, 2024, 11(1): 34.

[41]

Kelly JJ, London MG, McCormick AR, Rojas M, Scott JW, Hoellein TJ. Wastewater treatment alters microbial colonization of microplastics. PLoS ONE, 2021, 16(1): e0244443.

[42]

Khandare SD, Chaudhary DR, Jha B. Marine bacterial biodegradation of low-density polyethylene (ldpe) plastic. Biodegradation, 2021, 32(2): 127-143.

[43]

Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation, 2024, 35(3): 249-279.

[44]

Kotova IB, Taktarova YV, Tsavkelova EA, Egorova MA, Bubnov IA, Malakhova DV, Shirinkina LI, Sokolova TG, Bonch-Osmolovskaya EA. Microbial degradation of plastics and approaches to make it more efficient. Microbiology, 2021, 90(6): 671-701.

[45]

Lin H, Mu X, Huang J, Jiang H, Niu J, Shu Z. Comparative analysis of polyester hydrolysis activity among three lipolytic enzymes. J Chem Technol Biotechnol, 2019, 94(8): 2522-2528.

[46]

Lusher AL, Hernandez-Milian G, Berrow S, Rogan E, O’Connor I. Incidence of marine debris in cetaceans stranded and bycaught in Ireland: recent findings and a review of historical knowledge. Environ Pollut, 2018, 232: 467-476.

[47]

Meng X, Yang L, Liu H, Li Q, Xu G, Zhang Y, Guan F, Zhang Y, Zhang W, Wu N, Tian J. Protein engineering of stable ispetase for pet plastic degradation by premuse. Int J Biol Macromol, 2021, 180: 667-676.

[48]

Meyer Cifuentes IE, Degenhardt J, Neumann-Schaal M, Jehmlich N, Ngugi DK, Öztürk B. Comparative biodegradation analysis of three compostable polyesters by a marine microbial community. Appl Environ Microbiol, 2023, 89(12): e0106023.

[49]

Montazer Z, Habibi Najafi MB, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol, 2019, 65(3): 224-234.

[50]

Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM. Production of biodegradable plastic from agricultural wastes. Arab J Chem, 2018, 11(4): 546-553.

[51]

Nawaz A, Hasan F, Shah AA. Degradation of poly(ε-caprolactone) (pcl) by a newly isolated Brevundimonas sp. Strain mrl-an1 from soil. FEMS Microbiol Lett, 2015, 362(1): 1-7.

[52]

Nawong C, Umsakul K, Sermwittayawong N. Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz J Microbiol, 2018, 49(3): 481-488.

[53]

Nguyen LH, Nguyen HD, Tran PT, Nghiem TT, Nguyen TT, Dao VL, Phan TN, To AK, Hatamoto M, Yamaguchi T, Kasai D, Fukuda M. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Biodegradation, 2020, 31(4–6): 303-317.

[54]

Olewnik-Kruszkowska E, Burkowska-But A, Tarach I, Walczak M, Jakubowska E (2020) Biodegradation of polylactide-based composites with an addition of a compatibilizing agent in different environments. Int Biodeterior Biodegrad 147. https://doi.org/10.1016/j.ibiod.2019.104840

[55]

Park SY, Kim CG. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 2019, 222: 527-533.

[56]

Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess, 2017, 4(1): 15.

[57]

Peixoto J, Silva LP, Kruger RH (2017) Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324 (Pt B 634–644. https://doi.org/10.1016/j.jhazmat.2016.11.037

[58]

Pomata D, La Nasa J, Biale G, Barlucchi L, Ceccarini A, Di Filippo P, Riccardi C, Buiarelli F, Modugno F, Simonetti G. Plastic breath: quantification of microplastics and polymer additives in airborne particles. Sci Total Environ, 2024, 932: 173031.

[59]

Prakash T, Yadav SR, Bürger M, Jendrossek D. Cleavage of natural rubber by rubber oxygenases in gram-negative bacteria. Appl Microbiol Biotechnol, 2024, 108(1): 191.

[60]

Prasopdee T, Smitthipong W (2020) Effect of fillers on the recovery of rubber foam: from theory to applications. Polym (Basel) 12(11). https://doi.org/10.3390/polym12112745

[61]

Qi X, Wu Y, Zhang ST, Yin CF, Ji M, Liu Y, Xu Y, Zhou NY. The unique salt bridge network in glacpetase: a key to its stability. Appl Environ Microbiol, 2024, 90(3): e0224223.

[62]

Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol, 2021, 325: 124739.

[63]

Rajendran N, Han J. Integrated polylactic acid and biodiesel production from food waste: process synthesis and economics. Bioresour Technol, 2022, 343: 126119.

[64]

Richter PK, Blázquez-Sánchez P, Zhao Z, Engelberger F, Wiebeler C, Künze G, Frank R, Krinke D, Frezzotti E, Lihanova Y, Falkenstein P, Matysik J, Zimmermann W, Sträter N, Sonnendecker C. Structure and function of the metagenomic plastic-degrading polyester hydrolase phl7 bound to its product. Nat Commun, 2023, 14(1): 1905.

[65]

Sarkar B, Gupta AM, Mandal S. Insights from the comparative genome analysis of natural rubber degrading nocardia species. Bioinformation, 2021, 17(10): 880-890.

[66]

Satti SM, Shah AA. Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol, 2020, 70(6): 413-430.

[67]

Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, Virdin J, Dunphy-Daly MM. Plastic pollution solutions: emerging technologies to prevent and collectmarineplastic pollution. Environ Int, 2020, 144: 106067.

[68]

Schmitt G, Birke J, Jendrossek D. Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase roxa. AMB Express, 2019, 9(1): 166.

[69]

Serrano-Aguirre L, Prieto MA. Can bioplastics always offer a truly sustainable alternative to fossil-based plastics?. Microb Biotechnol, 2024, 17(4): e14458.

[70]

Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. Nov., strain 35y. PLoS ONE, 2018, 13(5): e0197448.

[71]

Shi K, Su T, Wang Z. Comparison of poly(butylene succinate) biodegradation by Fusarium solani cutinase and Candida Antarctica lipase. Polym Degrad Stab, 2019, 164: 55-60.

[72]

Shilpa, Basak N, Meena SS. Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Front Environ Sci Eng, 2022, 16(12): 161.

[73]

Skariyachan S, Megha M, Kini MN, Mukund KM, Rizvi A, Vasist K. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of bangalore, India. Environ Monit Assess, 2015, 187(1): 4174.

[74]

Soong YV, Abid U, Chang AC, Ayafor C, Patel A, Qin J, Xu J, Lawton C, Wong HW, Sobkowicz MJ, Xie D. Enzyme selection, optimization, and production toward biodegradation of post-consumer poly(ethylene terephthalate) at scale. Biotechnol J, 2023, 18(12): e2300119.

[75]

Sova N, Savchenko B, Beloshenko V, Slieptsov A, Vozniak I (2023) Sorption properties of pet copolyesters and new approach for foaming with filament extrusion additive manufacturing. Polym (Basel) 15(5). https://doi.org/10.3390/polym15051138

[76]

Srivastava P, Saji J, Manickam N (2024) Biodegradation of polyethylene terephthalate (pet) by Brucella Intermedia iitr130 and its proposed metabolic pathway. https://doi.org/10.1007/s10532-024-10070-9. Biodegradation

[77]

Sun J, Prabhu A, Aroney STN, Rinke C (2022a) Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas Morio) microbiome in styrofoam feeding trials. Microb Genom 8(6). https://doi.org/10.1099/mgen.0.000842

[78]

Sun Y, Hu J, Yusuf A, Wang Y, Jin H, Zhang X, Liu Y, Wang Y, Yang G, He J. A critical review on microbial degradation of petroleum-based plastics: quantitatively effects of chemical addition in cultivation media on biodegradation efficiency. Biodegradation, 2022, 33(1): 1-16.

[79]

Suzuki N, Suda D, Ngan NTT, Gibu N, Huong NL, Anh TK, Kasai D. Characterization of latex-clearing protein and aldehyde dehydrogenases involved in the utilization of poly(cis-1,4-isoprene) by Nocardia farcinica Nbrc 15532. Microorganisms, 2022, 10: 12.

[80]

Swiontek Brzezinska M, Walczak M, Kalwasinska A, Richert A, Swiatczak J, Deja-Sikora E, Burkowska-But A. Biofilm formation during biodegradation of polylactide, poly (3,4 hydroxybutyrate) and poly(epsilon-caprolactone) in activated sludge. Int J Biol Macromol, 2020, 159: 539-546.

[81]

Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guemard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andre I, Duquesne S, Marty A. An engineered pet depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802): 216-219.

[82]

Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guémard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, André I, Duquesne S, Marty A. An engineered pet depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802): 216-219.

[83]

Urbanek AK, Strzelecki MC, Mirończuk AM. The potential of cold-adapted microorganisms for biodegradation of bioplastics. Waste Manag, 2021, 119: 72-81.

[84]

Vahabi H, Laoutid F, Mehrpouya M, Saeb MR, Dubois P (2021) Flame retardant polymer materials: an update and the future for 3d printing developments. Mater Sci Engineering: R: Rep 144. https://doi.org/10.1016/j.mser.2020.100604

[85]

Vargas-Suarez M, Fernandez-Cruz V, Loza-Tavera H. Biodegradation of polyacrylic and polyester polyurethane coatings by enriched microbial communities. Appl Microbiol Biotechnol, 2019, 103(7): 3225-3236.

[86]

Vivi VK, Martins-Franchetti SM, Attili-Angelis D. Biodegradation of pcl and pvc: Chaetomium Globosum (atcc 16021) activity. Folia Microbiol (Praha), 2019, 64(1): 1-7.

[87]

Wang J, Jain R, Shen X, Sun X, Cheng M, Liao JC, Yuan Q, Yan Y. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab Eng, 2017, 40: 148-156.

[88]

Wang M, Liu P, Gu Z, Cheng H, Li X (2019a) A scientometric review of resource recycling industry. Int J Environ Res Public Health 16(23). https://doi.org/10.3390/ijerph16234654

[89]

Wang X, Chen J, Tang X, Wang J, Zhu L, Zhang W, Wang H, Li Y, Zhang Q. Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: an in silico approach. Chemosphere, 2019, 231: 126-133.

[90]

Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J. Enhancing secretion of polyethylene terephthalate hydrolase petase in Bacillus subtilis wb600 mediated by the sp(amy) signal peptide. Lett Appl Microbiol, 2020, 71(3): 235-241.

[91]

Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng, 2016, 113(8): 1658-1665.

[92]

Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CPS, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-based design of efficient pet hydrolases. ACS Catal, 2022, 12(6): 3382-3396.

[93]

Wiśniewska P, Wang S, Formela K. Waste tire rubber devulcanization technologies: state-of-the-art, limitations and future perspectives. Waste Manag, 2022, 150: 174-184.

[94]

Xing RZ, Zhao ZQ, Zhao WQ, Chen Z, Chen JF, Zhou SG. Biodegradation of polystyrene by Geobacillus stearothermophilus. Huan Jing Ke Xue, 2021, 42(6): 3056-3062.

[95]

Yan T, Balzer AH, Herbert KM, Epps TH, Korley LTJ. Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chem Sci, 2023, 14(20): 5243-5265.

[96]

Zhang S, He Y, Yin Y, Jiang G. Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly(butylene succinate) composites. Carbohydr Polym, 2019, 206: 827-836.

[97]

Zhang Y, Pedersen JN, Eser BE, Guo Z. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery. Biotechnol Adv, 2022, 60: 107991.

[98]

Zhao SL, Xi PF, Guo FY, Deng S, Jia JL. Evaluation and screening of dioxin control technology in waste incineration flue gas. Huan Jing Ke Xue, 2020, 41(9): 3985-3992.

[99]

Zheng Y, Li Q, Liu P, Yuan Y, Dian L, Wang Q, Liang Q, Su T, Qi Q. Dynamic docking-assisted engineering of hydrolases for efficient pet depolymerization. ACS Catal, 2024, 14(5): 3627-3639.

[100]

Zhigang X, Kuangdi X (2022) Plastic deformation. The ecph encyclopedia of mining and metallurgy. Springer Nature Singapore, Singapore https://link.springer.com/referencework/10.1007/978-981-99-2086-0

[101]

Zhong-Johnson EZL, Dong Z, Canova CT, Destro F, Cañellas M, Hoffman MC, Maréchal J, Johnson TM, Zheng M, Schlau-Cohen GS, Lucas MF, Braatz RD, Sprenger KG, Voigt CA, Sinskey AJ. Analysis of poly(ethylene terephthalate) degradation kinetics of evolved ispetase variants using a surface crowding model. J Biol Chem, 2024, 300(3): 105783.

Funding

National Natural Science Foundation of Chinaarch Group Project of the National Natural Science Foundation of China(22078011)

National Natural Science Foundation of China(21908003)

National Key Research and Development Program of China(2021YFC2100600)

China Petrochemical Corporation (Sinopec Group)(223260)

Fundamental Research Funds for the Central Universities(QNTD2023-01)

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/