Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials

Shaowei Li , Guodong Liu

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 74

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 74 DOI: 10.1186/s40643-024-00790-4
Review

Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials

Author information +
History +
PDF

Abstract

Cellulosic materials are attracting increasing research interest because of their abundance, biocompatibility, and biodegradability, making them suitable in multiple industrial and medical applications. Functionalization of cellulose is usually required to improve or expand its properties to meet the requirements of different applications. Cellulose-binding domains (CBDs) found in various proteins have been shown to be powerful tools in the functionalization of cellulose materials. In this review, we firstly introduce the structural characteristics of commonly used CBDs belonging to carbohydrate-binding module families 1, 2 and 3. Then, we summarize four main kinds of methodologies for employing CBDs to modify cellulosic materials (i.e., CBD only, genetic fusion, non-covalent linkage and covalent linkage). Via different approaches, CBDs have been used to improve the material properties of cellulose, immobilize enzymes for biocatalysis, and design various detection tools. To achieve industrial applications, researches for lowering the production cost of CBDs, improving their performance (e.g., stability), and expanding their application scenarios are still in need.

Keywords

Cellulosic materials / Cellulose-binding protein / Carbohydrate binding module / Material functionalization

Cite this article

Download citation ▾
Shaowei Li, Guodong Liu. Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials. Bioresources and Bioprocessing, 2024, 11(1): 74 DOI:10.1186/s40643-024-00790-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abouhmad A, Mamo G, Dishisha T, Amin MA, Hatti-Kaul R. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol, 2016, 121(1): 115-125.

[2]

Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2005, 127(31): 11196.

[3]

Aïssa K, Karaaslan MA, Renneckar S, Saddler JN. Functionalizing cellulose nanocrystals with click modifiable carbohydrate-binding modules. Biomacromolecules, 2019, 20(8): 3087-3093.

[4]

Almeida A, Rosa AMM, Azevedo AM, Prazeres DMF. A biomolecular recognition approach for the functionalization of cellulose with gold nanoparticles. J Mol Recognit, 2017, 30(9): e2634.

[5]

Apitius L, Rübsam K, Jakesch C, Jakob F, Schwaneberg U. Ultrahigh-throughput screening system for directed polymer binding peptide evolution. Biotechnol Bioeng, 2019, 116(8): 1856-1867.

[6]

Aziz T, Farid A, Haq F, Kiran M, Ullah A, Zhang K, Li C, Ghazanfar S, Sun H, Ullah R, Ali A, Muzammal M, Shah M, Akhtar N, Selim S, Hagagy N, Samy M, Al Jaouni SK. A review on the modification of cellulose and its applications. Polymers, 2022, 14(15): 3206.

[7]

Barbosa M, Simões H, Prazeres DMF. Functionalization of cellulose-based hydrogels with bi-functional fusion proteins containing carbohydrate-binding modules. Materials, 2021, 14(12): 3175.

[8]

Barbosa M, Simões H, Pinto SN, Macedo AS, Fonte P, Prazeres DMF. Fusions of a carbohydrate binding module with the small cationic hexapeptide RWRWRW confer antimicrobial properties to cellulose-based materials. Acta Biomater, 2022, 143: 216-232.

[9]

Bartnik M, Facey PC. Badal S, Delgoda R. Chapter 8 - glycosides. Pharmacognosy, 2017, Boston: Academic.

[10]

Cavaco-Paulo A, Morgado J, Andreaus J, Kilburn D. Interactions of cotton with CBD peptides. Enzyme Microb Technol, 1999, 25(8–9): 639-643.

[11]

Chen C, Xi Y, Weng Y. Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers, 2022, 14(16): 3335.

[12]

Coseri S. Cellulose: to depolymerize… or not to?. Biotechnol Adv, 2017, 35(2): 251-266.

[13]

Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res, 2022, 50(D1): D571-D577.

[14]

Duan C-J, Feng Y-L, Cao Q-L, Huang M-Y, Feng J-X. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity. Sci Rep, 2016, 6(1): 19392.

[15]

Ekborg NA, Morrill W, Burgoyne AM, Li L, Distell DL. CelAB, a multifunctional cellulase encoded by T7902, a culturable symbiont isolated from the wood-boring marine bivalve. Appl Environ Microb, 2007, 73(23): 7785-7788.

[16]

Elter A, Bock T, Spiehl D, Russo G, Hinz SC, Bitsch S, Baum E, Langhans M, Meckel T, Dörsam E, Kolmar H, Schwall G. Carbohydrate binding module-fused antibodies improve the performance of cellulose-based lateral flow immunoassays. Sci Rep, 2021, 11(1): 7880.

[17]

Estevinho BN, Samaniego N, Talens-Perales D, Fabra MJ, López-Rubio A, Polaina J, Marín-Navarro J. Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered β-galactosidase. Int J Biol Macromol, 2018, 115: 476-482.

[18]

Geng Z, Shin JJ, Xi Y, Hawker CJ. Click chemistry strategies for the accelerated synthesis of functional macromolecules. J Polym Sci, 2021, 59(11): 963-1042.

[19]

Gennari A, Simon R, Sperotto NDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Renard G, Chies JM, Volpato G, de Volken CF. Application of cellulosic materials as supports for single-step purification and immobilization of a recombinant β-galactosidase via cellulose-binding domain. Int J Biol Macromol, 2022, 199: 307-317.

[20]

Gilkes NR, Warren RA, Miller RC, Kilburn DG. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem, 1988, 263(21): 10401-10407.

[21]

Godigamuwa K, Nakashima K, Okamoto J, Kawasaki S. Biological route to fabricate silica on cellulose using immobilized silicatein fused with a carbohydrate-binding module. Biomacromolecules, 2020, 21(7): 2922-2928.

[22]

Gong W, Han Q, Chen Y, Wang B, Shi J, Wang L, Cai L, Meng Q, Zhang Z, Liu Q, Yang Y, Yang J, Zheng L, Li Y, Ma Y. A glucose biosensor based on glucose oxidase fused to a carbohydrate binding module family 2 tag that specifically binds to the cellulose-modified electrode. Enzyme Microb Technol, 2021, 150: 109869.

[23]

Griffo A, Rooijakkers BJM, Hähl H, Jacobs K, Linder MB, Laaksonen P. Binding forces of cellulose binding modules on cellulosic nanomaterials. Biomacromolecules, 2019, 20(2): 769-777.

[24]

Hallac BB, Ragauskas AJ. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuel Bioprod Bior, 2011, 5(2): 215-225.

[25]

Han Q, Gong W, Zhang Z, Wang L, Wang B, Cai L, Meng Q, Li Y, Liu Q, Yang Y, Zheng L, Ma Y. Orientated immobilization of FAD-dependent glucose dehydrogenase on electrode by carbohydrate-binding module fusion for efficient glucose assay. Int J Mol Sci, 2021, 22(11): 5529.

[26]

Heinze T. Rojas OJ. Cellulose: structure and Properties. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, 2016, Cham: Springer International Publishing.

[27]

Hinkley TC, Singh S, Garing S, Le Ny A-LM, Nichols KP, Peters JE, Talbert JN, Nugen SR. A phage-based assay for the rapid, quantitative, and single CFU visualization of E. Coli (ECOR #13) in drinking water. Sci Rep, 2018, 8(1): 14630.

[28]

Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry, 1989, 28(18): 7241-7257.

[29]

Laaksonen P, Walther A, Malho JM, Kainlauri M, Ikkala O, Linder MB. Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. Angew Chem Int Edit, 2011, 50(37): 8688-8691.

[30]

Levy I, Nussinovitch A, Shpigel E, Shoseyov O. Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial. Cellulose, 2002, 9(1): 91-98.

[31]

Li X, Wan C, Tao T, Chai H, Huang Q, Chai Y, Wu Y. An overview of the development status and applications of cellulose-based functional materials. Cellulose, 2024, 31(1): 61-99.

[32]

Li Z, Waghmare PR, Dijkhuizen L, Meng X, Liu W. Research advances on the consolidated bioprocessing of lignocellulosic biomass. Eng Microbiol, 2024, 4(2): 100139.

[33]

Liao H, Myung S, Zhang YHP. One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl Microbiol Biotech, 2012, 93(3): 1109-1117.

[34]

Limón MC, Margolles-Clark E, Benı́tez T, Penttilä M. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma Harzianum. FEMS Microbiol Lett, 2001, 198(1): 57-63.

[35]

Linder M, Teeri TT. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57(1): 15-28.

[36]

Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano, 2021, 15(3): 3593-3611.

[37]

Liu Y, Ran Q, Guo J, Zhu W, Bushra R, Duan X, Huang Y, Jiang Z, Khan MR, Jin Y, Xiao H, Song J. In-situ CBM3-modified bacterial cellulose film with improved mechanical properties. Int J Biol Macromol, 2023, 243: 125193.

[38]

Long L, Hu Y, Xie L, Sun F, Xu Z, Hu J. Constructing a bacterial cellulose-based bacterial sensor platform by enhancing cell affinity via a surface-exposed carbohydrate binding module. Green Chem, 2021, 23(23): 9600-9609.

[39]

McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng Des Sel, 2000, 13(11): 801-809.

[40]

Myung S, Zhang X-Z, Zhang Y-HP. Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Progr, 2011, 27: 969-975.

[41]

Myung S, You C, Zhang Y-HP. Recyclable cellulose-containing magnetic nanoparticles: immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling. J Mater Chem B, 2013, 1(35): 4419-4427.

[42]

Natarajan S, Joseph J, França Prazeres DM. Exploring carbohydrate binding module fusions and fab fragments in a cellulose-based lateral flow immunoassay for detection of cystatin C. Sci Rep, 2022, 12(1): 5478.

[43]

Navone L, Moffitt K, Johnston WA, Mercer T, Cooper C, Spann K, Speight RE. Bioengineered textiles with peptide binders that capture SARS-CoV-2 viral particles. Commun Mater, 2022, 3(1): 54.

[44]

Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng Des Sel, 1987, 1(2): 107-113.

[45]

Novy V, Nielsen F, Olsson J, Aïssa K, Saddler JN, Wallberg O, Galbe M. Elucidation of changes in cellulose ultrastructure and accessibility in hardwood fractionation processes with carbohydrate binding modules. ACS Sustain Chem Eng, 2020, 8(17): 6767-6776.

[46]

O’Donnell N, Okkelman IA, Timashev P, Gromovykh TI, Papkovsky DB, Dmitriev RI. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater, 2018, 80: 85-96.

[47]

Oliveira C, Carvalho V, Domingues L, Gama FM. Recombinant CBM-fusion technology — applications overview. Biotechnol Adv, 2015, 33(3): 358-369.

[48]

Oliveira C, Sepúlveda G, Aguiar TQ, Gama FM, Domingues L. Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect. Cellulose, 2015, 22(4): 2755-2765.

[49]

Pala H, Lemos MA, Mota M, Gama FM. Enzymatic upgrade of old paperboard containers. Enzyme Microb Technol, 2001, 29(4): 274-279.

[50]

Pelus A, Bordes G, Barbe S, Bouchiba Y, Burnard C, Cortés J, Enjalbert B, Esque J, Estaña A, Fauré R, Henras AK, Heux S, Le Men C, Millard P, Nouaille S, Pérochon J, Toanen M, Truan G, Verdier A, Wagner C, Romeo Y, Montanier CY. A tripartite carbohydrate-binding module to functionalize cellulose nanocrystals. Biomater Sci, 2021, 9(22): 7444-7455.

[51]

Pfaff SA, Wang X, Wagner ER, Wilson LA, Kiemle SN, Cosgrove DJ. Detecting the orientation of newly-deposited crystalline cellulose with fluorescent CBM3. Cell Surf, 2022, 8: 100089.

[52]

Poole DM, Morag E, Lamed R, Bayer EA, Hazlewood GP, Gilbert HJ. Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol Lett, 1992, 99(2–3): 181-186.

[53]

Qi M, O’Brien JP, Yang JJ. A recombinant triblock protein polymer with dispersant and binding properties for digital printing. Biopolymers, 2008, 90(1): 28-36.

[54]

Razzak MA, Lee DW, Lee J, Hwang I. Overexpression and purification of gracilariopsis chorda carbonic anhydrase (GcCAα3) in Nicotiana Benthamiana, and its immobilization and use in CO2 hydration reactions. Front Plant Sci, 2020, 11: 563721.

[55]

Rennison AP, Westh P, Møller MS. Protein-plastic interactions: the driving forces behind the high affinity of a carbohydrate-binding module for polyethylene terephthalate. Sci Total Environ, 2023, 870: 161948.

[56]

Ribitsch D, Yebra AO, Zitzenbacher S, Wu J, Nowitsch S, Steinkellner G, Greimel K, Doliska A, Oberdorfer G, Gruber CC, Gruber K, Schwab H, Stana-Kleinschek K, Acero EH, Guebitz GM. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. Biomacromolecules, 2013, 14(6): 1769-1776.

[57]

Rosa AMM, Louro AF, Martins SAM, Inácio J, Azevedo AM, Prazeres DMF. Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem, 2014, 86(9): 4340-4347.

[58]

Rosa AMM, Prazeres DMF, Paulo PMR. Fluorescence correlation spectroscopy study of the complexation of DNA hybrids, IgG antibody, and a chimeric protein of IgG-binding ZZ domains fused with a carbohydrate binding module. Phys Chem Chem Phys, 2017, 19(25): 16606-16614.

[59]

Rosa AMM, Nazar MR, Prazeres DMF. Colorimetric detection of DNA strands on cellulose microparticles using ZZ-CBM fusions and gold nanoparticles. Biotechnol J, 2019, 14(8): e1800590.

[60]

Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J. Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28(4): 1893-1931.

[61]

Shi X-W, Zheng F, Pan R-f, Wang J, Ding S. Engineering and comparative characteristics of double carbohydrate binding modules as a strength additive for papermaking applications. BioResources, 2014, 9(2): 3117-3131.

[62]

Shiiba H, Hayashi S, Yui T. Molecular dynamics study of carbohydrate binding module mutants of fungal cellobiohydrolases. Carbohyd Res, 2013, 374: 96-102.

[63]

Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol R, 2006, 70(2): 283-295.

[64]

Sidar A, Albuquerque ED, Voshol GP, Ram AFJ, Vijgenboom E, Punt PJ. Carbohydrate binding modules: diversity of domain architecture in amylases and cellulases from filamentous microorganisms. Front Bioeng Biotechnol, 2020, 8: 871.

[65]

Singh S, Hinkley T, Nugen SR, Talbert JN. Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system. Anal Bioanal Chem, 2019, 411(27): 7273-7279.

[66]

Togo Y, Nakashima K, Mwandira W, Kawasaki S. A novel metal adsorbent composed of a hexa-histidine tag and a carbohydrate-binding module on cellulose. Anal Sci, 2020, 36(4): 459-464.

[67]

Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA. Crystal structure of a bacterial family-III cellulose‐binding domain: a general mechanism for attachment to cellulose. EMBO J, 1996, 15(21): 5739-5751.

[68]

Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett, 1986, 204(2): 223-227.

[69]

Wang S, Cui G-Z, Song X-F, Feng Y, Cui Q. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose. Appl Biochem Biotechnol, 2012, 168(3): 708-717.

[70]

Wang Y, Wang X, Xie Y, Zhang K. Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose, 2018, 25(7): 3703-3731.

[71]

Wang Z, Qi J, Hinkley TC, Nugen SR, Goddard JM. Recombinant lactase with a cellulose binding domain permits facile immobilization onto cellulose with retained activity. Food Bioprod Process, 2021, 126: 207-214.

[72]

Wang X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress of multi-enzyme complexes based on the design of scaffold protein. Bioresour Bioprocess, 2023, 10(1): 72.

[73]

Wolfberger A, Petritz A, Fian A, Herka J, Schmidt V, Stadlober B, Kargl R, Spirk S, Griesser T. Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications. Cellulose, 2015, 22(1): 717-727.

[74]

Xiao Q, Han J, Jiang C, Luo M, Zhang Q, He Z, Hu J, Wang G. Novel fusion protein consisting of metallothionein, cellulose binding module, and superfolder GFP for lead removal from the water decoction of traditional Chinese medicine. ACS Omega, 2020, 5(6): 2893-2898.

[75]

Xu GY, Ong E, Gilkes NR, Kilburn DG, Muhandiram DR, Harris-Brandts M, Carver JP, Kay LE, Harvey TS. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry, 1995, 34(21): 6993-7009.

[76]

Yang F, Jin ES, Zhu Y, Wu S, Zhu W, Jin Y, Song J. A mini-review on the applications of cellulose-binding domains in lignocellulosic material utilizations. BioRes, 2015, 10(3): 6081-6094.

[77]

Yang JM, Kim KR, Jeon S, Cha HJ, Kim CS. A sensitive paper-based lateral flow immunoassay platform using engineered cellulose-binding protein linker fused with antibody-binding domains. Sens Actuat B-Chem, 2021, 329: 129099.

[78]

You C, Zhang Y-HP. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth Biol, 2013, 2(2): 102-110.

[79]

Żebrowska J, Mucha P, Prusinowski M, Krefft D, Żylicz-Stachula A, Deptuła M, Skoniecka A, Tymińska A, Zawrzykraj M, Zieliński J, Pikuła M, Skowron PM. Development of hybrid biomicroparticles: cellulose exposing functionalized fusion proteins. Microb Cell Fact, 2024, 23(1): 81.

[80]

Zhang Y, Chen S, Wu J, Chen J. Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins. Biocatal Biotransfor, 2012, 30(2): 184-189.

Funding

National Natural Science Foundation of China(32170037)

SKLMT Frontiers and Challenges Project(SKLMTFCP-2023-04)

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/