Regioselective and enantioselective propargylic hydroxylations catalyzed by P450tol monooxygenases

Xu Deng , Cheng-Cheng Song , Wen-Jing Gu , Yu-Jie Wang , Lu Feng , Xiao-Jian Zhou , Ming-Qiang Zhou , Wei-Cheng Yuan , Yong-Zheng Chen

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 64

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 64 DOI: 10.1186/s40643-024-00771-7
Research

Regioselective and enantioselective propargylic hydroxylations catalyzed by P450tol monooxygenases

Author information +
History +
PDF

Abstract

Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts. Here a green and efficient asymmetric hydroxylation of primary and secondary C–H bonds at propargylic positions has been established. A series of optically active propargylic alcohols were prepared with high regio- and enantioselectivity (up to 99% ee) under mild reaction conditions by using P450tol, while the C≡C bonds in the molecule remained unreacted. This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols. In addition, we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96% ee, which’s an important synthetic intermediate of antifungal drug Ravuconazole.

Keywords

Biocatalysis / Hydroxylation / P450 monooxygenase / Propargylic alcohols / Enantioselectivity

Cite this article

Download citation ▾
Xu Deng, Cheng-Cheng Song, Wen-Jing Gu, Yu-Jie Wang, Lu Feng, Xiao-Jian Zhou, Ming-Qiang Zhou, Wei-Cheng Yuan, Yong-Zheng Chen. Regioselective and enantioselective propargylic hydroxylations catalyzed by P450tol monooxygenases. Bioresources and Bioprocessing, 2024, 11(1): 64 DOI:10.1186/s40643-024-00771-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez LX, Christ ML, Sorokin AB. Selective oxidation of alkenes and alkynes catalyzed by copper complexes. Appl Catal a Gen, 2007, 325(2): 303-308.

[2]

Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res, 2012, 40(W1): W537-W541.

[3]

Bauer EB. Transition-metal-Catalyzed functionalization of propargylic alcohols and their derivatives. Synthesis, 2012, 44(08): 1131-1151.

[4]

Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem, 1993, 97(40): 10269-10280.

[5]

Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem, 1990, 11(4): 431-439.

[6]

Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev, 2020, 49(22): 8137-8155.

[7]

Chen C-C, Dai M, Zhang L, Zhao J, Zeng W, Shi M, Huang J-W, Liu W, Guo R-T, Li A. Molecular basis for a toluene monooxygenase to govern substrate selectivity. ACS Catal, 2022, 12(5): 2831-2839.

[8]

Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and enantioselective hydroxylation of C−H bonds by synergistic use of protein engineering and exogenous dual-functional small molecules. Angew Chem Int Ed, 2023, 62(4

[9]

Corey EJ, Cimprich KA. Highly enantioselective alkynylation of aldehydes promoted by chiral oxazaborolidines. J Am Chem Soc, 1994, 116(7): 3151-3152.

[10]

Cui H-B, Xie L-Z, Wan N-W, He Q, Li Z, Chen Y-Z. Cascade bio-hydroxylation and dehalogenation for one-pot enantioselective synthesis of optically active β-halohydrins from halohydrocarbons. Green Chem, 2019, 21(16): 4324-4328.

[11]

Cui H-B, Ma T, Zhang R-Y, Shan J, Wang Z-Q, Bai M, Chen Y-Z. Biocatalytic synthesis of chiral benzylic alcohols via enantioselective hydroxylation by a self-sufficient cytochrome p450 from deinococcus gobiensis. Synthesis, 2023

[12]

Deng G-Z, Zhou X, Yu Q-X, Mou X-Q, An M, Cui H-B, Zhou X-J, Wan N-W, Li Z, Chen Y-Z. Highly enantioselective hydroxylation of 3-arylpropanenitriles to access chiral β-Hydroxy nitriles by engineering of P450pyr monooxygenase. Org Process Res Dev, 2022, 26(7): 2046-2051.

[13]

Dsc Case DA, Iii TEC, Darden TA, Duke RE, . AMBER16 and ambertools17, 2017, San Francisco: University of California.

[14]

González-Granda S, Méndez-Sánchez D, Lavandera I, Gotor-Fernández V. Laccase-mediated oxidations of propargylic alcohols. application in the deracemization of 1-arylprop-2-yn-1-ols in combination with alcohol dehydrogenases. ChemCatChem, 2020, 12(2): 520-527.

[15]

Greshock TJ, Johns DM, Noguchi Y, Williams RM. Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228). Org Lett, 2008, 10(4): 613-616.

[16]

Helal CJ, Magriotis PA, Corey EJ. Direct catalytic enantioselective reduction of achiral α, β-Ynones. strong remote steric effects Across the C−C triple bond. J Am Chem Soc, 1996, 118(44): 10938-10939.

[17]

Hu S, Hager LP. Highly enantioselective propargylic hydroxylations catalyzed by chloroperoxidase. J Am Chem Soc, 1999, 121(4): 872-873.

[18]

Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected reactions of α, β-unsaturated fatty acids provide insight into the mechanisms of CYP152 peroxygenases. Angew Chem Int Ed, 2021, 60(46): 24694-24701.

[19]

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2): 926-935.

[20]

Kawanishi S, Oki S, Kundu D, Akai S. Lipase/oxovanadium Co-catalyzed dynamic kinetic resolution of propargyl alcohols: competition between racemization and rearrangement. Org Lett, 2019, 21(9): 2978-2982.

[21]

Kim HJ, Ishida K, Ishida-Ito M, Hertweck C. Sequential allylic alcohol formation by a multifunctional cytochrome P450 monooxygenase with rare redox partners. Angew Chem Int Ed, 2022, 61(26

[22]

Li Y, Wong LL. Multi-Functional oxidase activity of CYP102A1 (P450BM3) in the oxidation of quinolines and tetrahydroquinolines. Angew Chem Int Ed, 2019, 58(28): 9551-9555.

[23]

Li A, Wu S, Adams JP, Snajdrova R, Li Z. Asymmetric epoxidation of alkenes and benzylic hydroxylation with P450tol monooxygenase from Rhodococcus coprophilus TC-2. Chem Commun, 2014, 50(63): 8771-8774.

[24]

Li A, Acevedo-Rocha CG, D'Amore L, Chen J, Peng Y, Garcia-Borràs M, Gao C, Zhu J, Rickerby H, Osuna S, Zhou J, Reetz MT. Regio- and stereoselective steroid hydroxylation at C7 by cytochrome P450 monooxygenase mutants. Angew Chem Int Ed, 2020, 59(30): 12499-12505.

[25]

Liu Z, Qin Z-Y, Zhu L, Athavale SV, Sengupta A, Jia Z-J, Garcia-Borràs M, Houk KN, Arnold FH. An enzymatic platform for primary amination of 1-Aryl-2-alkyl alkynes. J Am Chem Soc, 2022, 144(1): 80-85.

[26]

Lu G, Li Y-M, Li X-S, Chan ASC. Synthesis and application of new chiral catalysts for asymmetric alkynylation reactions. Coord Chem Rev, 2005, 249(17): 1736-1744.

[27]

Lumbroso A, Cooke ML, Breit B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis. Angew Chem Int Ed, 2013, 52(7): 1890-1932.

[28]

MJ. Frisch GWT, et al. (2016) Gaussian 16 Revision A.03.

[29]

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput, 2015, 11(8): 3696-3713.

[30]

Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Regio- and enantio-selective chemo-enzymatic C−H-lactonization of decanoic Acid to (S)-δ-decalactone. Angew Chem Int Ed, 2019, 58(17): 5668-5671.

[31]

Matsumura K, Hashiguchi S, Ikariya T, Noyori R. Asymmetric transfer hydrogenation of α, β-acetylenic ketones. J Am Chem Soc, 1997, 119(37): 8738-8739.

[32]

Nakayama A, Kogure N, Kitajima M, Takayama H. Asymmetric total synthesis of a pentacyclic lycopodium alkaloid: huperzine-Q. Angew Chem Int Ed, 2011, 50(35): 8025-8028.

[33]

Narayan ARH, Jiménez-Osés G, Liu P, Negretti S, Zhao W, Gilbert MM, Ramabhadran RO, Yang Y-F, Furan LR, Li Z, Podust LM, Montgomery J, Houk KN, Sherman DH. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations. Nat Chem, 2015, 7(8): 653-660.

[34]

Neufeld K, Henßen B, Pietruszka J. Enantioselective allylic hydroxylation of ω-alkenoic acids and esters by P450 BM3 monooxygenase. Angew Chem Int Ed, 2014, 53(48): 13253-13257.

[35]

Roiban G-D, Reetz MT. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem Commun, 2015, 51(12): 2208-2224.

[36]

Sang X, Tong F, Zeng Z, Wu M, Yuan B, Sun Z, Sheng X, Qu G, Alcalde M, Hollmann F, Zhang W. A biocatalytic platform for the synthesis of Enantiopure propargylic alcohols and amines. Org Lett, 2022, 24(23): 4252-4257.

[37]

Saravanan T, Jana S, Chadha A. Utilization of whole cell mediated deracemization in a chemoenzymatic synthesis of enantiomerically enriched polycyclic chromeno[4,3-b] pyrrolidines. Org Biomol Chem, 2014, 12(26): 4682-4690.

[38]

Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des, 2010, 24(5): 417-422.

[39]

Shahrokh K, Orendt A, Yost GS, Cheatham Iii TE. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J Comput Chem, 2012, 33(2): 119-133.

[40]

Shatskiy A, Kivijärvi T, Lundberg H, Tinnis F, Adolfsson H. Ruthenium-catalyzed asymmetric transfer hydrogenation of propargylic ketones. ChemCatChem, 2015, 7(23): 3818-3821.

[41]

Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem, 1984, 5(2): 129-145.

[42]

Song F, Zheng M, Wang J, Liu H, Lin Z, Liu B, Deng Z, Cong H, Zhou Q, Qu X. Chemoenzymatic synthesis of C14-functionalized steroids. Nat Synth, 2023

[43]

Stephen Clark J, Tolhurst KF, Taylor M, Swallow S. Enantioselective propargylic oxidation. Tetrahedron Lett, 1998, 39(27): 4913-4916.

[44]

Trost BM, Weiss AH. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv Synth Catal, 2009, 351(7–8): 963-983.

[45]

Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31(2): 455-461.

[46]

Wan N-W, Cui H-B, Zhao L, Shan J, Chen K, Wang Z-Q, Zhou X-J, Cui B-D, Han W-Y, Chen Y-Z. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol, 2022, 12(18): 5703-5708.

[47]

Wang Q, Pu L. Diverse transformations of chiral propargylic alcohols generated by BINOL-catalyzed alkyne addition to aldehydes. Synlett, 2013, 24(11): 1340-1363.

[48]

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem, 2004, 25(9): 1157-1174.

[49]

Wang J, Wang H, Wei C, Zhang L, Cui B, Wang Z, Zhang Y, Wan N, Aisa HA, Chen Y. Combined photoredox/engineered P450 enzymatic direct dioxygen-functionalization of arylalkanes to chiral acyloins. Org Biomol Chem, 2022, 20(46): 9085-9092.

[50]

Watanabe K, Miyazaki Y, Okubo M, Zhou B, Tsuji H, Kawatsura M. Nickel-catalyzed asymmetric propargylic amination of propargylic carbonates bearing an internal alkyne group. Org Lett, 2018, 20(17): 5448-5451.

[51]

Whitehouse CJC, Bell SG, Wong L-L. P450BM3 (CYP102A1): connecting the dots. Chem Soc Rev, 2012, 41(3): 1218-1260.

[52]

Wu K, Tang L, Cui H, Wan N, Liu Z, Wang Z, Zhang S, Cui B, Han W, Chen Y. Biocatalytical asymmetric sulfoxidation by Identifying cytochrome P450 from parvibaculum lavamentivorans DS-1. ChemCatChem, 2018, 10(23): 5410-5413.

[53]

Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. Characterization of a self-sufficient cytochrome P450 monooxygenase from deinococcus apachensis for enantioselective benzylic hydroxylation. ChemBioChem, 2020, 21(13): 1820-1825.

[54]

Xie L, Zhang Y, Zhang R, Cui H, Cui B, Han W, Wan N, Li Z, Chen Y. Biocatalytic stereoselective synthesis of methyl mandelates by engineering a cytochrome P450 hydroxylase. Green Synth Catal, 2023

[55]

Xu L, Muller MR, Yu X, Zhu B-Q. Improved chiral synthesis of ravuconazole. Synth Commun, 2009, 39(9): 1611-1625.

[56]

Zhang Y-M, Yuan M-L, Liu W-P, Xie J-H, Zhou Q-L. Iridium-catalyzed asymmetric transfer hydrogenation of alkynyl ketones using sodium formate and ethanol as hydrogen sources. Org Lett, 2018, 20(15): 4486-4489.

[57]

Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W-J, He C, Wang X. Biocatalytic enantioselective β-hydroxylation of unactivated C−H bonds in aliphatic carboxylic acids. Angew Chem Int Ed, 2022, 61(28

[58]

Zhang Y, Xiong Z, Li Y, Wilson M, Christensen KE, Jaques E, Hernández-Lladó P, Robertson J, Wong LL. Enantioselective oxidation of unactivated C-H bonds in cyclic amines by iterative docking-guided mutagenesis of P450BM3 (CYP102A1). Nat Synth, 2022, 1(12): 936-945.

[59]

Zhang X, Shen P, Zhao J, Chen Y, Li X, Huang J-W, Zhang L, Li Q, Gao C, Xing Q, Chen C-C, Guo R-T, Li A. Rationally controlling selective steroid hydroxylation via scaffold sampling of a P450 family. ACS Catal, 2023, 13(2): 1280-1289.

Funding

the National Natural Science Foundation of China(32271537)

Guizhou Provincial Science and Technology Department(QKHRCPTGCC-2023-003)

the Science and Technology Department of Zunyi(ZSKRPT-2020-5)

Zunyi Medical University (QKH-2018-5772-014)

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/